R Language Benchmarking using microbenchmark


Example

You can use the microbenchmark package to conduct "sub-millisecond accurate timing of expression evaluation".

In this example we are comparing the speeds of six equivalent data.table expressions for updating elements in a group, based on a certain condition.

More specifically:

A data.table with 3 columns: id, time and status. For each id, I want to find the record with the maximum time - then if for that record if the status is true, I want to set it to false if the time is > 7

library(microbenchmark)
library(data.table)

set.seed(20160723)
dt <- data.table(id = c(rep(seq(1:10000), each = 10)),
                time = c(rep(seq(1:10000), 10)),
                status = c(sample(c(TRUE, FALSE), 10000*10, replace = TRUE)))
setkey(dt, id, time)  ## create copies of the data so the 'updates-by-reference' don't affect other expressions
dt1 <- copy(dt)
dt2 <- copy(dt)
dt3 <- copy(dt)
dt4 <- copy(dt)
dt5 <- copy(dt)
dt6 <- copy(dt)

microbenchmark(
  
  expression_1 = {
    dt1[ dt1[order(time), .I[.N], by = id]$V1, status := status * time < 7 ] 
    },
  
  expression_2 = {
    dt2[,status := c(.SD[-.N, status], .SD[.N, status * time > 7]), by = id]
    },
  
  expression_3 = {
    dt3[dt3[,.N, by = id][,cumsum(N)], status := status * time > 7]
    },
  
  expression_4 = { 
    y <- dt4[,.SD[.N],by=id]
    dt4[y, status := status & time > 7]
  },
  
  expression_5 = {
    y <- dt5[, .SD[.N, .(time, status)], by = id][time > 7 & status]
    dt5[y, status := FALSE]
  },
  
  expression_6 = {
    dt6[ dt6[, .I == .I[which.max(time)], by = id]$V1 & time > 7, status := FALSE]
    },
  
  times = 10L ## specify the number of times each expression is evaluated
)

# Unit: milliseconds
#         expr         min          lq        mean      median         uq          max neval
# expression_1   11.646149   13.201670   16.808399   15.643384   18.78640    26.321346    10
# expression_2 8051.898126 8777.016935 9238.323459 8979.553856 9281.93377 12610.869058    10
# expression_3    3.208773    3.385841    4.207903    4.089515    4.70146     5.654702    10
# expression_4   15.758441   16.247833   20.677038   19.028982   21.04170    36.373153    10
# expression_5 7552.970295 8051.080753 8702.064620 8861.608629 9308.62842  9722.234921    10
# expression_6   18.403105   18.812785   22.427984   21.966764   24.66930    28.607064    10

The output shows that in this test expression_3 is the fastest.

References

data.table - Adding and modifying columns

data.table - special grouping symbols in data.table