
tkinter

#tkinter

Table of Contents

About 1

Chapter 1: Getting started with tkinter 2

Remarks 2

Differences between python 2 and 3 2

Importing in python 2.x 2

Importing in python 3.x 2

Further Reading 2

Versions 3

Tcl 3

Python 3

Examples 4

Installation or Setup 4

Hello, World! (minimal) 5

Hello, World! (modular, object-oriented) 6

Chapter 2: Adding Images To Label/Button 8

Introduction 8

Examples 8

File Formats Supported By Tkinter 8

Usage of .GIF formats. 8

Chapter 3: Customize ttk styles 9

Introduction 9

Examples 9

Customize a treeview 9

Chapter 4: Delaying a function 11

Syntax 11

Parameters 11

Remarks 11

Examples 11

.after() 11

Chapter 5: Multiple windows (TopLevel widgets) 13

Examples 13

Difference between Tk and Toplevel 13

arranging the window stack (the .lift method) 14

Chapter 6: Scrolling widgets 16

Introduction 16

Syntax 16

Parameters 16

Remarks 16

Examples 16

Connecting a vertical scrollbar to a Text widget 16

Scrolling a Canvas widget horizontally and vertically 16

Scrolling a group of widgets 17

Chapter 7: The Tkinter Entry Widget 18

Syntax 18

Parameters 18

Remarks 18

Examples 18

Creating an Entry widget and setting a default value 18

Getting the value of an Entry widget 18

Adding validation to an Entry widget 19

Getting int From Entry Widget 19

Chapter 8: The Tkinter Radiobutton widget 20

Syntax 20

Parameters 20

Remarks 20

Examples 21

Here's an example of how to turn radio buttons to button boxes: 21

Create a group of radiobuttons 21

Chapter 9: Tkinter Geometry Managers 22

Introduction 22

Examples 22

pack() 22

grid() 23

place() 24

Chapter 10: Ttk widgets 27

Introduction 27

Syntax 27

Parameters 27

Remarks 27

Examples 27

Treeview: Basic example 27

Create the widget 27

Definition of the columns 27

Definition of the headings 28

Insert some rows 28

Packing 28

Progressbar 29

Function updating the progressbar 29

Set the maximum value 29

Create the progress bar 29

Initial and maximum values 29

Emulate progress each 0.5 s 29

Credits 31

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: tkinter

It is an unofficial and free tkinter ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official tkinter.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/tkinter
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with tkinter

Remarks

Tkinter ("Tk Interface")is python's standard cross-platform package for creating graphical user
interfaces (GUIs). It provides access to an underlying Tcl interpreter with the Tk toolkit, which itself
is a cross-platform, multilanguage graphical user interface library.

Tkinter isn't the only GUI library for python, but it is the one that comes standard. Additional GUI
libraries that can be used with python include wxPython, PyQt, and kivy.

Tkinter's greatest strength is its ubiquity and simplicity. It works out of the box on most platforms
(linux, OSX, Windows), and comes complete with a wide range of widgets necessary for most
common tasks (buttons, labels, drawing canvas, multiline text, etc).

As a learning tool, tkinter has some features that are unique among GUI toolkits, such as named
fonts, bind tags, and variable tracing.

Differences between python 2 and 3

Tkinter is largely unchanged between python 2 and python 3, with the major difference being that
the tkinter package and modules were renamed.

Importing in python 2.x

In python 2.x, the tkinter package is named Tkinter, and related packages have their own names.
For example, the following shows a typical set of import statements for python 2.x:

import Tkinter as tk
import tkFileDialog as filedialog
import ttk

Importing in python 3.x

Although functionality did not change much between python 2 and 3, the names of all of the tkinter
modules have changed. The following is a typical set of import statements for python 3.x:

import tkinter as tk
from tkinter import filedialog
from tkinter import ttk

Further Reading

https://riptutorial.com/ 2

https://wxpython.org/what.php
https://riverbankcomputing.com/software/pyqt/intro
https://kivy.org/#home

Tkinter questions on Stackoverflow•
Official Python 3 tkinter documentation•
Official Python 2 tkinter documentation•
Tkdocs.com - multiplatform tk documentation•
Effbot introduction to tkinter•
Tkinter reference guide, New Mexico Tech•

Versions

Tcl

Version Release Date

8.6 2016-07-27

8.5 2016-02-12

8.4 2013-06-01

8.3 2002-10-18

8.2 1999-12-16

8.1 1999-05-26

8.0 1999-03-09

Python

Version Release Date

3.6 2016-12-23

3.5 2015-09-13

3.4 2014-03-17

3.3 2012-09-29

3.2 2011-02-20

3.1 2009-06-26

3.0 2008-12-03

2.7 2010-07-03

https://riptutorial.com/ 3

http://stackoverflow.com/questions/tagged/tkinter
https://docs.python.org/3.5/library/tkinter.html
https://docs.python.org/2.7/library/tkinter.html
http://tkdocs.com
http://effbot.org/tkinterbook/tkinter-index.htm#introduction
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://www.tcl.tk/software/tcltk/8.6.html
http://www.tcl.tk/software/tcltk/8.5.html
http://www.tcl.tk/software/tcltk/8.4.html
http://www.tcl.tk/software/tcltk/8.3.html
http://www.tcl.tk/software/tcltk/8.2.html
http://www.tcl.tk/software/tcltk/8.1.html
http://www.tcl.tk/software/tcltk/8.0.html
https://www.python.org/downloads/release/python-360/
https://www.python.org/downloads/release/python-350/
https://www.python.org/download/releases/3.4.0/
https://www.python.org/download/releases/3.3.0/
https://www.python.org/download/releases/3.2/
https://www.python.org/download/releases/3.1/
https://www.python.org/download/releases/3.0/
https://www.python.org/download/releases/2.7/

Version Release Date

2.6 2008-10-02

2.5 2006-09-19

2.4 2004-11-30

2.3 2003-07-29

2.2 2001-12-21

2.1 2001-04-15

2.0 2000-10-16

Examples

Installation or Setup

Tkinter comes pre-installed with the Python installer binaries for Mac OS X and the Windows
platform. So if you install Python from the official binaries for Mac OS X or Windows platform, you
are good to go with Tkinter.

For Debian versions of Linux you have to install it manually by using the following commands.

For Python 3

sudo apt-get install python3-tk

For Python 2.7

sudo apt-get install python-tk

Linux distros with yum installer can install tkinter module using the command:

yum install tkinter

Verifying Installation

To verify if you have successfully installed Tkinter, open your Python console and type the
following command:

import tkinter as tk # for Python 3 version

or

import Tkinter as tk # for Python 2.x version

https://riptutorial.com/ 4

https://www.python.org/download/releases/2.6/
https://www.python.org/download/releases/2.5/
https://www.python.org/download/releases/2.4/
https://www.python.org/download/releases/2.3/
https://www.python.org/download/releases/2.2/
https://www.python.org/download/releases/2.1/
https://www.python.org/download/releases/2.0/
https://www.python.org/downloads/

You have successfully installed Tkinter, if the above command executes without an error.

To check the Tkinter version, type the following commands in your Python REPL:

For python 3.X

import tkinter as tk
tk._test()

For python 2.X

import Tkinter as tk
tk._test()

Note: Importing Tkinter as tk is not required but is good practice as it helps keep things consistent
between version.

Hello, World! (minimal)

Let's test our basic knowledge of tkinter by creating the classic "Hello, World!" program.

First, we must import tkinter, this will vary based on version (see remarks section about
"Differences between Python 2 and 3")

In Python 3 the module tkinter has a lowercase t:

import tkinter as tk

In Python 2 the module Tkinter has a uppercase T:

import Tkinter as tk

Using as tk isn't strictly necessary but we will use it so the rest of this example will work the same
for both version.

now that we have the tkinter module imported we can create the root of our application using the
Tk class:

root = tk.Tk()

This will act as the window for our application. (note that additional windows should be Toplevel
instances instead)

Now that we have a window, let's add text to it with a Label

label = tk.Label(root, text="Hello World!") # Create a text label
label.pack(padx=20, pady=20) # Pack it into the window

Once the application is ready we can start it (enter the main event loop) with the mainloop method

https://riptutorial.com/ 5

root.mainloop()

This will open and run the application until it is stopped by the window being closed or calling
exiting functions from callbacks (discussed later) such as root.destroy().

Putting it all together:

import tkinter as tk # Python 3.x Version
#import Tkinter as tk # Python 2.x Version

root = tk.Tk()

label = tk.Label(root, text="Hello World!") # Create a text label
label.pack(padx=20, pady=20) # Pack it into the window

root.mainloop()

And something like this should pop up:

Hello, World! (modular, object-oriented)

import tkinter as tk

class HelloWorld(tk.Frame):
 def __init__(self, parent):
 super(HelloWorld, self).__init__(parent)

 self.label = tk.Label(self, text="Hello, World!")
 self.label.pack(padx=20, pady=20)

if __name__ == "__main__":
 root = tk.Tk()

 main = HelloWorld(root)
 main.pack(fill="both", expand=True)

 root.mainloop()

Note: It's possible to inherit from just about any tkinter widget, including the root window. Inheriting
from tkinter.Frame is at least arguably the most flexible in that it supports multiple document
interfaces (MDI), single document interfaces (SDI), single page applications, and multiple-page

https://riptutorial.com/ 6

https://i.stack.imgur.com/DreFs.png

applications.

Read Getting started with tkinter online: https://riptutorial.com/tkinter/topic/987/getting-started-with-
tkinter

https://riptutorial.com/ 7

https://riptutorial.com/tkinter/topic/987/getting-started-with-tkinter
https://riptutorial.com/tkinter/topic/987/getting-started-with-tkinter

Chapter 2: Adding Images To Label/Button

Introduction

This shows the proper usage of images and how to correctly display images.

Examples

File Formats Supported By Tkinter

Tkinter support .ppm files from PIL(Python Imaging Library), .JPG, .PNG and .GIF.

To import and image you first need to create a reference like so:

Image = PhotoImage(filename = [Your Image here])

Now, we can add this image to Button and Labels like so using the "img" callback:

 Lbl = Label (width=490, img=image)

Usage of .GIF formats.

In order to display a gif, you need to show it frame by frame sort of like an animation.

An animated gif consists of a number of frames in a single file. Tk loads the first frame but you can
specify different frames by passing an index parameter when creating the image. For example:

frame2 = PhotoImage(file=imagefilename, format="gif -index 2")

If you load up all the frames into separate PhotoImages and then use timer events to switch the
frame being shown (label.configure(image=nextframe)). The delay on the timer lets you control the
animation speed. There is nothing provided to give you the number of frames in the image other
than it failing to create a frame once you exceed the frame count.

Read Adding Images To Label/Button online: https://riptutorial.com/tkinter/topic/9746/adding-
images-to-label-button

https://riptutorial.com/ 8

https://riptutorial.com/tkinter/topic/9746/adding-images-to-label-button
https://riptutorial.com/tkinter/topic/9746/adding-images-to-label-button

Chapter 3: Customize ttk styles

Introduction

The style of the new ttk widgets is one of the most powerful aspects of ttk. Besides the fact that it
is a completely different way of working than the traditional tk package, it enables to perform a
huge degree of customization on your widgets.

Examples

Customize a treeview

By taking Treeview: Basic example, it can be shown how to customize a basic treeview.

In this case, we create a style "mystyle.Treeview" with the following code (see the comments to
understand what each line does):

style = ttk.Style()
style.configure("mystyle.Treeview", highlightthickness=0, bd=0, font=('Calibri', 11)) # Modify
the font of the body
style.configure("mystyle.Treeview.Heading", font=('Calibri', 13,'bold')) # Modify the font of
the headings
style.layout("mystyle.Treeview", [('mystyle.Treeview.treearea', {'sticky': 'nswe'})]) # Remove
the borders

Then, the widget is created giving the above style:

tree=ttk.Treeview(master,style="mystyle.Treeview")

If you would like to have a different format depending on the rows, you can make use of tags:

tree.insert(folder1, "end", "", text="photo1.png", values=("23-Jun-17 11:28","PNG file","2.6
KB"),tags = ('odd',))
tree.insert(folder1, "end", "", text="photo2.png", values=("23-Jun-17 11:29","PNG file","3.2
KB"),tags = ('even',))
tree.insert(folder1, "end", "", text="photo3.png", values=("23-Jun-17 11:30","PNG file","3.1
KB"),tags = ('odd',))

Then, for instance, a background color can be associated to the tags:

tree.tag_configure('odd', background='#E8E8E8')
tree.tag_configure('even', background='#DFDFDF')

The result is a treeview with modified fonts on both the body and headings, no border and different
colors for the rows:

https://riptutorial.com/ 9

http://www.riptutorial.com/tkinter/example/31880/treeview--basic-example

Note: To generate the above picture, you should add/change the aforementioned lines of code in
the example Treeview: Basic example.

Read Customize ttk styles online: https://riptutorial.com/tkinter/topic/10624/customize-ttk-styles

https://riptutorial.com/ 10

https://i.stack.imgur.com/Te2PD.png
http://www.riptutorial.com/tkinter/example/31880/treeview--basic-example
https://riptutorial.com/tkinter/topic/10624/customize-ttk-styles

Chapter 4: Delaying a function

Syntax

widget.after(delay_ms, callback, *args)•

Parameters

Parameter Description

delay_ms Time (milliseconds) which is delayed the call to the function callback

callback
Function that is called after the given delay_ms. If this parameter is not given,
.after acts similar to time.sleep (in milliseconds)

Remarks

Syntax assumes a widget accepted by the method .after has been previously created (i.e
widget=tk.Label(parent))

Examples

.after()

.after(delay, callback=None) is a method defined for all tkinter widgets. This method simply calls
the function callback after the given delay in ms. If no function is given, it acts similar to time.sleep
(but in milliseconds instead of seconds)

Here is an example of how to create a simple timer using after:

import tkinter
try:
 import tkinter as tk
except ImportError:
 import Tkinter as tk

class Timer:
 def __init__(self, parent):
 # variable storing time
 self.seconds = 0
 # label displaying time
 self.label = tk.Label(parent, text="0 s", font="Arial 30", width=10)
 self.label.pack()
 # start the timer
 self.label.after(1000, self.refresh_label)

 def refresh_label(self):

https://riptutorial.com/ 11

https://docs.python.org/3/library/time.html#time.sleep

 """ refresh the content of the label every second """
 # increment the time
 self.seconds += 1
 # display the new time
 self.label.configure(text="%i s" % self.seconds)
 # request tkinter to call self.refresh after 1s (the delay is given in ms)
 self.label.after(1000, self.refresh_label)

if __name__ == "__main__":
 root = tk.Tk()
 timer = Timer(root)
 root.mainloop()

Read Delaying a function online: https://riptutorial.com/tkinter/topic/6724/delaying-a-function

https://riptutorial.com/ 12

https://riptutorial.com/tkinter/topic/6724/delaying-a-function

Chapter 5: Multiple windows (TopLevel
widgets)

Examples

Difference between Tk and Toplevel

Tk is the absolute root of the application, it is the first widget that needs to be instantiated and the
GUI will shut down when it is destroyed.

Toplevel is a window in the application, closing the window will destroy all children widgets placed
on that window{1} but will not shut down the program.

try:
 import tkinter as tk #python3
except ImportError:
 import Tkinter as tk #python2

#root application, can only have one of these.
root = tk.Tk()

#put a label in the root to identify the window.
label1 = tk.Label(root, text="""this is root
closing this window will shut down app""")
label1.pack()

#you can make as many Toplevels as you like
extra_window = tk.Toplevel(root)
label2 = tk.Label(extra_window, text="""this is extra_window
closing this will not affect root""")
label2.pack()

root.mainloop()

If your python program only represents a single application (which it almost always will) then you
should have only one Tk instance, but you may create as many Toplevel windows as you like.

try:
 import tkinter as tk #python3
except ImportError:
 import Tkinter as tk #python2

def generate_new_window():
 window = tk.Toplevel()
 label = tk.Label(window, text="a generic Toplevel window")
 label.pack()

root = tk.Tk()

spawn_window_button = tk.Button(root,
 text="make a new window!",
 command=generate_new_window)

https://riptutorial.com/ 13

spawn_window_button.pack()

root.mainloop()

{1}: if a Toplevel (A = Toplevel(root)) is the parent of another Toplevel (B = Toplevel(A)) then
closing window A will also close window B.

arranging the window stack (the .lift method)

The most basic case to lift a particular window above the others, just call the .lift() method on
that window (either Toplevel or Tk)

import tkinter as tk #import Tkinter as tk #change to commented for python2

root = tk.Tk()

for i in range(4):
 #make a window with a label
 window = tk.Toplevel(root)
 label = tk.Label(window,text="window {}".format(i))
 label.pack()
 #add a button to root to lift that window
 button = tk.Button(root, text = "lift window {}".format(i), command=window.lift)
 button.grid(row=i)

root.mainloop()

However if that window is destroyed trying to lift it will raise an error like this:

Exception in Tkinter callback
Traceback (most recent call last):
 File "/.../tkinter/__init__.py", line 1549, in __call__
 return self.func(*args)
 File "/.../tkinter/__init__.py", line 785, in tkraise
 self.tk.call('raise', self._w, aboveThis)
_tkinter.TclError: bad window path name ".4385637096"

Often when we are trying to put a particular window in front of the user but it was closed a good
alternative is to recreate that window:

import tkinter as tk #import Tkinter as tk #change to commented for python2

dialog_window = None

def create_dialog():
 """creates the dialog window
 ** do not call if dialog_window is already open, this will
 create a duplicate without handling the other
if you are unsure if it already exists or not use show_dialog()"""
 global dialog_window
 dialog_window = tk.Toplevel(root)
 label1 = tk.Label(dialog_window,text="this is the dialog window")
 label1.pack()
 #put other widgets

https://riptutorial.com/ 14

 dialog_window.lift() #ensure it appears above all others, probably will do this anyway

def show_dialog():
 """lifts the dialog_window if it exists or creates a new one otherwise"""
 #this can be refactored to only have one call to create_dialog()
 #but sometimes extra code will be wanted the first time it is created
 if dialog_window is None:
 create_dialog()
 return
 try:
 dialog_window.lift()
 except tk.TclError:
 #window was closed, create a new one.
 create_dialog()

root = tk.Tk()

dialog_button = tk.Button(root,
 text="show dialog_window",
 command=show_dialog)
dialog_button.pack()
root.mainloop()

This way the function show_dialog will show the dialog window whether it exists or not, also note
that you can call .winfo_exists() to check if it exists before trying to lift the window instead of
wrapping it in a try:except.

There is also the .lower() method that works the same way as the .lift() method, except
lowering the window in the stack:

import tkinter as tk #import Tkinter as tk #change to commented for python2

root = tk.Tk()
root.title("ROOT")
extra = tk.Toplevel()
label = tk.Label(extra, text="extra window")
label.pack()

lower_button = tk.Button(root,
 text="lower this window",
 command=root.lower)
lower_button.pack()

root.mainloop()

You will notice that it lowers even below other applications, to only lower below a certain window
you can pass it to the .lower() method, similarly this can also be done with the .lift() method to
only raise a window above another one.

Read Multiple windows (TopLevel widgets) online:
https://riptutorial.com/tkinter/topic/6439/multiple-windows--toplevel-widgets-

https://riptutorial.com/ 15

https://riptutorial.com/tkinter/topic/6439/multiple-windows--toplevel-widgets-

Chapter 6: Scrolling widgets

Introduction

Scrollbars can be added to Listbox, Canvas, and Text widgets. In addition, Entry widgets can be
scrolled horizontally. To be able to scroll other type of widgets, you need to put them inside a
Canvas or a Text widget.

Syntax

scrollbar = tk.Scrollbar(parent, **kwargs)•

Parameters

Parameter Description

parent
tkinter widgets exist in a hierarchy. Except for the root window, all widgets have
a parent. Some online tutorials call this "master". When the widget is added to
the screen with pack, place or grid, it will appear inside this parent widget

orient Orientation of the scrollbar, either "vertical" (default value) or "horizontal"

Remarks

These examples assume that tkinter has been imported with either import tkinter as tk (python 3)
or import Tkinter as tk (python 2).

Examples

Connecting a vertical scrollbar to a Text widget

The connection between the widget and the scrollbar goes both ways. The scrollbar needs to be
expanded vertically so that it has the same height as the widget.

text = tk.Text(parent)
text.pack(side="left")

scroll_y = tk.Scrollbar(parent, orient="vertical", command=text.yview)
scroll_y.pack(side="left", expand=True, fill="y")

text.configure(yscrollcommand=scroll_y.set)

Scrolling a Canvas widget horizontally and vertically

https://riptutorial.com/ 16

The principle is essentially the same as for the Text widget, but a Grid layout is used to put the
scrollbars around the widget.

canvas = tk.Canvas(parent, width=150, height=150)
canvas.create_oval(10, 10, 20, 20, fill="red")
canvas.create_oval(200, 200, 220, 220, fill="blue")
canvas.grid(row=0, column=0)

scroll_x = tk.Scrollbar(parent, orient="horizontal", command=canvas.xview)
scroll_x.grid(row=1, column=0, sticky="ew")

scroll_y = tk.Scrollbar(parent, orient="vertical", command=canvas.yview)
scroll_y.grid(row=0, column=1, sticky="ns")

canvas.configure(yscrollcommand=scroll_y.set, xscrollcommand=scroll_x.set)

Unlike for the Text widget, the scrollable region of the Canvas is not updated automatically when
its content is modified, so we need to define it and update it manually using the scrollregion
argument:

canvas.configure(scrollregion=canvas.bbox("all"))

canvas.bbox("all") returns the coordinates of the rectangle fitting the whole canvas content.

Scrolling a group of widgets

When a window contains many widgets, they might not all be visible. However, neither a window
(Tk or Toplevel instance) nor a Frame are scrollable. One solution to make the window content
scrollable is to put all the widgets in a Frame, and then, embed this Frame in a Canvas using the
create_window method.

canvas = tk.Canvas(parent)
scroll_y = tk.Scrollbar(parent, orient="vertical", command=canvas.yview)

frame = tk.Frame(canvas)
group of widgets
for i in range(20):
 tk.Label(frame, text='label %i' % i).pack()
put the frame in the canvas
canvas.create_window(0, 0, anchor='nw', window=frame)
make sure everything is displayed before configuring the scrollregion
canvas.update_idletasks()

canvas.configure(scrollregion=canvas.bbox('all'),
 yscrollcommand=scroll_y.set)

canvas.pack(fill='both', expand=True, side='left')
scroll_y.pack(fill='y', side='right')

Read Scrolling widgets online: https://riptutorial.com/tkinter/topic/8931/scrolling-widgets

https://riptutorial.com/ 17

https://riptutorial.com/tkinter/topic/8931/scrolling-widgets

Chapter 7: The Tkinter Entry Widget

Syntax

entry = tk.Entry(parent, **kwargs)•
entry.get()•
entry.insert(index, "value")•
entry.delete(start_index, end_index)•
entry.bind(event, callback)•

Parameters

Parameter Description

parent

tkinter widgets exist in a hieararchy. Except for the root window, all widgets
have a parent. Some online tutorials call this "master". When the widget is
added to the screen with pack, place or grid, it will appear inside this parent
widget

width

The width specifies the desired width of the widget based on an average
character width. For variable width fonts, this is based on the width of the zero
character (0). The default is 20. Note that the actual width could be larger or
smaller depending on how it is added to the screen.

Remarks

These examples assume that tkinter has been imported with either import tkinter as tk (python 3)
or import Tkinter as tk (python 2).

Examples

Creating an Entry widget and setting a default value

entry = tk.Entry(parent, width=10)
entry.insert(0, "Hello, World!")

Getting the value of an Entry widget

The value of an entry widget can be obtained with the get method of the widget:

name_entry = tk.Entry(parent)
...
name = name_entry.get()

https://riptutorial.com/ 18

Optionally, you may associate an instance of a StringVar, and retrieve the value from the StringVar
rather than from the widget:

name_var = tk.StringVar()
name_entry = tk.Entry(parent, textvariable=name_var)
...
name = name_var.get()

Adding validation to an Entry widget

To restrict the characters that can be typed into an entry widget, only numbers for instance, a
validate command can be added to the entry. A validate command is a function that return True if
the change is accepted, False otherwise. This function will be called each time the content of the
entry is modified. Various arguments can be passed to this function, like the type of change
(insertion, deletion), the inserted text, ...

def only_numbers(char):
 return char.isdigit()

validation = parent.register(only_numbers)
entry = Entry(parent, validate="key", validatecommand=(validation, '%S'))

The validate option determines the type of event that triggers the validation, here, it's any
keystroke in the entry. The '%S' in the validatecommand option means that the inserted or deleted
character is passed in argument to the only_numbers function. The full list of possibilities can be
found here.

Getting int From Entry Widget

When using the .get() method whatever is in the entry widget will be converted into a string. For
example, regardless of the type of input(It can be a number or sentence), the resulting outcome
will be a string. If the user types 4 the output will be "4" as in a string. To get an int from an Entry
Widget, first, call the .get() method.

What_User_Wrote = Entry.get()

Now we convert that string into an int like so:

Convert_To_Int = int(What_User_Wrote)

Likewise, if you want to save time you can simply do:

Convert_To_Int = int(Entry.get())

You can use the above method if you don't want to convert str to int.

Read The Tkinter Entry Widget online: https://riptutorial.com/tkinter/topic/4868/the-tkinter-entry-
widget

https://riptutorial.com/ 19

http://%20http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/entry-validation.html
https://riptutorial.com/tkinter/topic/4868/the-tkinter-entry-widget
https://riptutorial.com/tkinter/topic/4868/the-tkinter-entry-widget

Chapter 8: The Tkinter Radiobutton widget

Syntax

radiobutton = tk.Radiobutton(parent, **kwargs)•

Parameters

Parameter Description

parent
tkinter widgets exist in a hierarchy. Except for the root window, all widgets have
a parent. Some online tutorials call this "master". When the widget is added to
the screen with pack, place or grid, it will appear inside this parent widget.

command function called each time the user changes the state of the radiobutton

indicatoron 1 or True for radio buttons, 0 or False for button boxes

text Text to display next to the radiobutton.

value When the radiobutton is selected, the associated control variable is set to value.

variable Control variable the radiobutton shares with the other radiobutton of the group.

Remarks

These examples assume that tkinter has been imported with either import tkinter as tk (python 3)
or import Tkinter as tk (python 2).

Reference:

To turn the above example into a “button box” rather than a set of radio buttons, set the
indicatoron option to 0. In this case, there’s no separate radio button indicator, and the
selected button is drawn as SUNKEN instead of RAISED:

https://riptutorial.com/ 20

https://i.stack.imgur.com/mR7SL.png

-effbot

Examples

Here's an example of how to turn radio buttons to button boxes:

import tkinter as tk
root = tk.Tk()

rbvar = StringVar()
rbvar.set(" ")

rb1 = tk.Radiobutton(root, text="Option 1", variable=rbvar, value='a', indicatoron=0)
rb1.pack()

rb2 = tk.Radiobutton(root, text="Option 2", variable=rbvar, value='b', indicatoron=0)
rb2.pack()

Create a group of radiobuttons

Such a group is made of radiobuttons that share a control variable so that no more than one can
be selected.

control variable
var = tk.IntVar(parent, 0)

group of radiobuttons
for i in range(1,4):
 tk.Radiobutton(parent, text='Choice %i' % i, value=i, variable=var).pack()

tk.Button(parent, text='Print choice', command=lambda: print(var.get())).pack()

Read The Tkinter Radiobutton widget online: https://riptutorial.com/tkinter/topic/6338/the-tkinter-
radiobutton-widget

https://riptutorial.com/ 21

https://i.stack.imgur.com/6Nwdz.png
http://effbot.org/tkinterbook/radiobutton.htm
https://riptutorial.com/tkinter/topic/6338/the-tkinter-radiobutton-widget
https://riptutorial.com/tkinter/topic/6338/the-tkinter-radiobutton-widget

Chapter 9: Tkinter Geometry Managers

Introduction

There are three geometry managers to position widgets: pack(), grid() and place().

Examples

pack()

The pack() geometry manager organizes widgets in blocks before placing them in the parent
widget. It uses the options fill, expand and side.

Syntax

widget.pack(option)

Fill
Determines if the widget keeps the minimal space needed or takes up any extra space allocated to
it. Attributes: NONE (default), X (fill horizontally), Y (fill vertically), or BOTH (fill both horizontally
and vertically).

Expand
When set to YES, the widget expands to fill any space not used in widget's parent. Attributes:
YES, NO.

Side
Determines which side of the widget's parent it packs to. Attributes: TOP (default), BOTTOM,
LEFT, or RIGHT.

Example

from tkinter import *
root = Tk()
btn_fill = Button(root, text="Button")
btn_fill.pack(fill=X)

btn_expand = Button(root, text="Button")
btn_expand.pack(expand=YES)

btn_side = Button(root, text="Button")
btn_side.pack(side=RIGHT)

root.mainloop()

Result

https://riptutorial.com/ 22

grid()

The grid() geometry manager organises widgets in a table-like structure in the parent widget. The
master widget is split into rows and columns, and each part of the table can hold a widget. It uses
column, columnspan, ipadx, ipady, padx, pady, row, rowspan and sticky.

Syntax

widget.grid(options)

Column
The column to put widget in. The default column is 0, which is the leftmost column.

Columnspan
How many columns widget takes up. The default is 1.

Ipadx
How many pixels to pad widget horizontally inside the widget's borders.

Ipady
How many pixels to pad widget vertically inside the widget's borders.

Padx
How many pixels to pad widget horizontally outside the widget's borders.

Pady
How many pixels to pad widget vertically outside the widget's borders.

Row
The row to put widget in. The default row is 0, which is the topmost column.

Rowspan
How many rows the widget takes up. The default is 1.

Sticky
When the widget is smaller than the cell, sticky is used to indicate which sides and corners of the
cell the widget sticks to. The direction is defined by compass directions: N, E, S, W, NE, NW, SE,
and SW and zero. These could be a string concatenation, for example, NESW make the widget
take up the full area of the cell.

Example

from tkinter import *
root = Tk()

https://riptutorial.com/ 23

https://i.stack.imgur.com/AOcN1.jpg

btn_column = Button(root, text="I'm in column 3")
btn_column.grid(column=3)

btn_columnspan = Button(root, text="I have a columnspan of 3")
btn_columnspan.grid(columnspan=3)

btn_ipadx = Button(root, text="ipadx of 4")
btn_ipadx.grid(ipadx=4)

btn_ipady = Button(root, text="ipady of 4")
btn_ipady.grid(ipady=4)

btn_padx = Button(root, text="padx of 4")
btn_padx.grid(padx=4)

btn_pady = Button(root, text="pady of 4")
btn_pady.grid(pady=4)

btn_row = Button(root, text="I'm in row 2")
btn_row.grid(row=2)

btn_rowspan = Button(root, text="Rowspan of 2")
btn_rowspan.grid(rowspan=2)

btn_sticky = Button(root, text="I'm stuck to north-east")
btn_sticky.grid(sticky=NE)

root.mainloop()

Result

place()

The place() manager organises widgets by placing them in a specific position in the parent widget.
This geometry manager uses the options anchor, bordermode, height, width, relheight, relwidth,relx,
rely, x and y.

Anchor
Indicates where the widget is anchored to. The options are compass directions: N, E, S, W, NE,
NW, SE, or SW, which relate to the sides and corners of the parent widget. The default is NW (the

https://riptutorial.com/ 24

https://i.stack.imgur.com/XTc9h.jpg

upper left corner of widget)

Bordermode
Bordermode has two options: INSIDE, which indicates that other options refer to the parent's inside,
(Ignoring the parent's borders) and OUTSIDE, which is the opposite.

Height
Specify the height of a widget in pixels.

Width
Specify the width of a widget in pixels.

Relheight
Height as a float between 0.0 and 1.0, as a fraction of the height of the parent widget.

Relwidth
Width as a float between 0.0 and 1.0, as a fraction of the width of the parent widget.

Relx
Horizontal offset as a float between 0.0 and 1.0, as a fraction of the width of the parent widget.

Rely
Vertical offset as a float between 0.0 and 1.0, as a fraction of the height of the parent widget.

X
Horizontal offset in pixels.

Y
Vertical offset in pixels.

Example

from tkinter import *
root = Tk()
root.geometry("500x500")

btn_height = Button(root, text="50px high")
btn_height.place(height=50, x=200, y=200)

btn_width = Button(root, text="60px wide")
btn_width.place(width=60, x=300, y=300)

btn_relheight = Button(root, text="Relheight of 0.6")
btn_relheight.place(relheight=0.6)

btn_relwidth= Button(root, text="Relwidth of 0.2")
btn_relwidth.place(relwidth=0.2)

btn_relx=Button(root, text="Relx of 0.3")
btn_relx.place(relx=0.3)

btn_rely=Button(root, text="Rely of 0.7")
btn_rely.place(rely=0.7)

https://riptutorial.com/ 25

btn_x=Button(root, text="X = 400px")
btn_x.place(x=400)

btn_y=Button(root, text="Y = 321")
btn_y.place(y=321)

root.mainloop()

Result

Read Tkinter Geometry Managers online: https://riptutorial.com/tkinter/topic/9620/tkinter-
geometry-managers

https://riptutorial.com/ 26

https://i.stack.imgur.com/HBBkv.jpg
https://riptutorial.com/tkinter/topic/9620/tkinter-geometry-managers
https://riptutorial.com/tkinter/topic/9620/tkinter-geometry-managers

Chapter 10: Ttk widgets

Introduction

Examples of the different ttk widgets. Ttk has a total of 17 widgets, eleven of which already existed
in tkinter (tk).

Using ttk module gives your application a more modern and improved look.

Syntax

tree=ttk.Treeview(master,**kwargs)•

Parameters

Parameter Description

master
tkinter widgets exist in a hieararchy. Except for the root window, all widgets
have a parent (also called "master"). When the widget is added to the screen
with pack, place or grid, it will appear inside this parent widget

Remarks

These examples assume that tkinter has been imported with either import tkinter as tk (python 3)
or import Tkinter as tk (python 2).

It is also assumed that ttk has been imported with either from tkinter import ttk (python 3) or
import ttk (python 2).

Examples

Treeview: Basic example

This widget is used to display items with hierarchy. For instance, windows explorer can be
reproduced in this way. Some nice tables can be also done using treeview widget.

Create the widget

tree=ttk.Treeview(master)

https://riptutorial.com/ 27

Definition of the columns

You can define how many columns, their width and minimum width when the user tries to stretch
it. By defining stretch=tk.NO, the user cannot modify the width of the column.

tree["columns"]=("one","two","three")
tree.column("#0", width=270, minwidth=270, stretch=tk.NO)
tree.column("one", width=150, minwidth=150, stretch=tk.NO)
tree.column("two", width=400, minwidth=200)
tree.column("three", width=80, minwidth=50, stretch=tk.NO)

Definition of the headings

tree.heading("#0",text="Name",anchor=tk.W)
tree.heading("one", text="Date modified",anchor=tk.W)
tree.heading("two", text="Type",anchor=tk.W)
tree.heading("three", text="Size",anchor=tk.W)

Insert some rows

Level 1
folder1=tree.insert("", 1, "", text="Folder 1", values=("23-Jun-17 11:05","File folder",""))
tree.insert("", 2, "", text="text_file.txt", values=("23-Jun-17 11:25","TXT file","1 KB"))
Level 2
tree.insert(folder1, "end", "", text="photo1.png", values=("23-Jun-17 11:28","PNG file","2.6
KB"))
tree.insert(folder1, "end", "", text="photo2.png", values=("23-Jun-17 11:29","PNG file","3.2
KB"))
tree.insert(folder1, "end", "", text="photo3.png", values=("23-Jun-17 11:30","PNG file","3.1
KB"))

Packing

tree.pack(side=tk.TOP,fill=tk.X)

On Windows, the following screenshot can be obtained from this example.

https://riptutorial.com/ 28

Progressbar

The widget ttk.progress is useful when dealing with long computations so that the user knows that
the program is running. Following, an example updating a progressbar each 0.5 seconds is given:

Function updating the progressbar

def progress(currentValue):
 progressbar["value"]=currentValue

Set the maximum value

maxValue=100

Create the progress bar

progressbar=ttk.Progressbar(master,orient="horizontal",length=300,mode="determinate")
progressbar.pack(side=tk.TOP)

"determinate" mode is used when the progressbar is under control of the program.

Initial and maximum values

currentValue=0
progressbar["value"]=currentValue
progressbar["maximum"]=maxValue

https://riptutorial.com/ 29

https://i.stack.imgur.com/2Mzp2.png

Emulate progress each 0.5 s

divisions=10
for i in range(divisions):
 currentValue=currentValue+10
 progressbar.after(500, progress(currentValue))
 progressbar.update() # Force an update of the GUI

Read Ttk widgets online: https://riptutorial.com/tkinter/topic/10622/ttk-widgets

https://riptutorial.com/ 30

https://riptutorial.com/tkinter/topic/10622/ttk-widgets

Credits

S.
No

Chapters Contributors

1
Getting started with
tkinter

Billal BEGUERADJ, Bryan Oakley, Community, J.J. Hakala,
j_4321, JGreenwell, Mike - SMT, Neil A., Nico Brubaker, Razik,
ryneke, Tadhg McDonald-Jensen, tao, Yamboy1

2
Adding Images To
Label/Button

Angrywasabi

3 Customize ttk styles David Duran

4 Delaying a function David Duran, Neil A., Tadhg McDonald-Jensen

5
Multiple windows
(TopLevel widgets)

Tadhg McDonald-Jensen

6 Scrolling widgets j_4321

7
The Tkinter Entry
Widget

Angrywasabi, Bryan Oakley, double_j, j_4321

8
The Tkinter
Radiobutton widget

j_4321, nbro, Parviz Karimli

9
Tkinter Geometry
Managers

Henry

10 Ttk widgets David Duran

https://riptutorial.com/ 31

https://riptutorial.com/contributor/5906918/billal-begueradj
https://riptutorial.com/contributor/7432/bryan-oakley
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5781248/j-j--hakala
https://riptutorial.com/contributor/6415268/j-4321
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/7475225/mike---smt
https://riptutorial.com/contributor/6719703/neil-a-
https://riptutorial.com/contributor/6856423/nico-brubaker
https://riptutorial.com/contributor/3157961/razik
https://riptutorial.com/contributor/6713378/ryneke
https://riptutorial.com/contributor/5827215/tadhg-mcdonald-jensen
https://riptutorial.com/contributor/2348704/tao
https://riptutorial.com/contributor/8013876/yamboy1
https://riptutorial.com/contributor/7758938/angrywasabi
https://riptutorial.com/contributor/2726773/david-duran
https://riptutorial.com/contributor/2726773/david-duran
https://riptutorial.com/contributor/6719703/neil-a-
https://riptutorial.com/contributor/5827215/tadhg-mcdonald-jensen
https://riptutorial.com/contributor/5827215/tadhg-mcdonald-jensen
https://riptutorial.com/contributor/6415268/j-4321
https://riptutorial.com/contributor/7758938/angrywasabi
https://riptutorial.com/contributor/7432/bryan-oakley
https://riptutorial.com/contributor/3826759/double-j
https://riptutorial.com/contributor/6415268/j-4321
https://riptutorial.com/contributor/6415268/j-4321
https://riptutorial.com/contributor/3924118/nbro
https://riptutorial.com/contributor/5601431/parviz-karimli
https://riptutorial.com/contributor/7519434/henry
https://riptutorial.com/contributor/2726773/david-duran

	About
	Chapter 1: Getting started with tkinter
	Remarks

	Differences between python 2 and 3
	Importing in python 2.x
	Importing in python 3.x

	Further Reading
	Versions
	Tcl
	Python
	Examples
	Installation or Setup
	Hello, World! (minimal)
	Hello, World! (modular, object-oriented)

	Chapter 2: Adding Images To Label/Button
	Introduction
	Examples
	File Formats Supported By Tkinter
	Usage of .GIF formats.

	Chapter 3: Customize ttk styles
	Introduction
	Examples
	Customize a treeview

	Chapter 4: Delaying a function
	Syntax
	Parameters
	Remarks
	Examples
	.after()

	Chapter 5: Multiple windows (TopLevel widgets)
	Examples
	Difference between Tk and Toplevel
	arranging the window stack (the .lift method)

	Chapter 6: Scrolling widgets
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Connecting a vertical scrollbar to a Text widget
	Scrolling a Canvas widget horizontally and vertically
	Scrolling a group of widgets

	Chapter 7: The Tkinter Entry Widget
	Syntax
	Parameters
	Remarks
	Examples
	Creating an Entry widget and setting a default value
	Getting the value of an Entry widget
	Adding validation to an Entry widget
	Getting int From Entry Widget

	Chapter 8: The Tkinter Radiobutton widget
	Syntax
	Parameters
	Remarks
	Examples
	Here's an example of how to turn radio buttons to button boxes:
	Create a group of radiobuttons

	Chapter 9: Tkinter Geometry Managers
	Introduction
	Examples
	pack()
	grid()
	place()

	Chapter 10: Ttk widgets
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Treeview: Basic example

	Create the widget
	Definition of the columns
	Definition of the headings
	Insert some rows
	Packing
	Progressbar

	Function updating the progressbar
	Set the maximum value
	Create the progress bar
	Initial and maximum values
	Emulate progress each 0.5 s
	Credits

