Keras is a high-level neural networks library, written in Python and capable of running on top of either TensorFlow or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research. Use Keras if you need a deep learning library that:
Keras uses the following dependencies:
Keras is a high-level library that provides a convenient Machine Learning API on top of other low-level libraries for tensor processing and manipulation, called Backends. At this time, Keras can be used on top any of the three available backends: TensorFlow, Theano, and CNTK.
Theano is installed automatically if you install Keras using pip. If you want to install Theano manually, please refer to Theano installation instructions.
TensorFlow is a recommended option, and by default, Keras uses TensorFlow backend, if available. To install TensorFlow, the easiest way is to do
$ pip install tensorflow
If you want to install it manually, please refer to TensorFlow installation instructions.
To install Keras, cd to the Keras folder and run the install command:
$ python setup.py install
You can also install Keras from PyPI:
$ pip install keras
If you have run Keras at least once, you will find the Keras configuration file at:
~/.keras/keras.json
If it isn't there, you can create it. The default configuration file looks like this:
{
"image_dim_ordering": "tf",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
By default, Keras will use TensorFlow as its tensor manipulation library. If you want to use other backend, simply change the field backend to either "theano" or "tensorflow", and Keras will use the new configuration next time you run any Keras code.