A DataFrame is a distributed collection of data organized into named columns. It is conceptually equivalent to a table in a relational database. DataFrames can be constructed from a wide array of sources such as: structured data files, tables in Hive, external databases, or existing RDDs.
Reading a Oracle RDBMS table into spark data frame::
SparkConf sparkConf = new SparkConf().setAppName("SparkConsumer");
sparkConf.registerKryoClasses(new Class<?>[]{
Class.forName("org.apache.hadoop.io.Text"),
Class.forName("packageName.className")
});
JavaSparkContext sparkContext=new JavaSparkContext(sparkConf);
SQLContext sqlcontext= new SQLContext(sparkContext);
Map<String, String> options = new HashMap();
options.put("driver", "oracle.jdbc.driver.OracleDriver");
options.put("url", "jdbc:oracle:thin:username/password@host:port:orcl"); //oracle url to connect
options.put("dbtable", "DbName.tableName");
DataFrame df=sqlcontext.load("jdbc", options);
df.show(); //this will print content into tablular format
We can also convert this data frame back to rdd if need be :
JavaRDD<Row> rdd=df.javaRDD();
Create a dataframe from a file:
public class LoadSaveTextFile {
//static schema class
public static class Schema implements Serializable {
public String getTimestamp() {
return timestamp;
}
public void setTimestamp(String timestamp) {
this.timestamp = timestamp;
}
public String getMachId() {
return machId;
}
public void setMachId(String machId) {
this.machId = machId;
}
public String getSensorType() {
return sensorType;
}
public void setSensorType(String sensorType) {
this.sensorType = sensorType;
}
//instance variables
private String timestamp;
private String machId;
private String sensorType;
}
public static void main(String[] args) throws ClassNotFoundException {
SparkConf sparkConf = new SparkConf().setAppName("SparkConsumer");
sparkConf.registerKryoClasses(new Class<?>[]{
Class.forName("org.apache.hadoop.io.Text"),
Class.forName("oracle.table.join.LoadSaveTextFile")
});
JavaSparkContext sparkContext=new JavaSparkContext(sparkConf);
SQLContext sqlcontext= new SQLContext(sparkContext);
//we have a file which ";" separated
String filePath=args[0];
JavaRDD<Schema> schemaRdd = sparkContext.textFile(filePath).map(
new Function<String, Schema>() {
public Schema call(String line) throws Exception {
String[] tokens=line.split(";");
Schema schema = new Schema();
schema.setMachId(tokens[0]);
schema.setSensorType(tokens[1]);
schema.setTimestamp(tokens[2]);
return schema;
}
});
DataFrame df = sqlcontext.createDataFrame(schemaRdd, Schema.class);
df.show();
}
}
Now we have data frame from oracle as well from a file. Similarly we can read a table from hive as well. On data frame we can fetch any column as we do in rdbms. Like get a min value for a column or max value. Can calculate a mean/avg for a column. Some other functions like select,filter,agg, groupBy are also available.