A simple OGL 4.0 GLSL shader program that shows the use of a model, view, and projection matrix The program is executed with a phyton script. To run the script, PyOpenGL and NumPy must be installed.
Projection matrix: The projection matrix describes the mapping of a pinhole camera from 3D points in the world to 2D points of the viewport. In this example we use a projection matrix with a field of view of 90 degrees.
View matrix: The view matrix defines the eye position and the viewing direction on the scene. In this example we are moving circular around the scene keeping a viewing direction to the center of the scene.
Model matrix: The model matrix defines the location and the relative size of an object in the scene. In this example the model matrices move the objects up and down.
mvp.vet
#version 400
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec3 inCol;
out vec3 vertCol;
uniform mat4 projectionMat44;
uniform mat4 viewMat44;
uniform mat4 modelMat44;
void main()
{
vertCol = inCol;
vec4 modolPos = modelMat44 * vec4( inPos, 1.0 );
vec4 viewPos = viewMat44 * modolPos;
gl_Position = projectionMat44 * viewPos;
}
mvp.frag
#version 400
in vec3 vertCol;
out vec4 fragColor;
void main()
{
fragColor = vec4( vertCol, 1.0 );
}
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import numpy as np
from time import time
import math
import sys
# draw event
def OnDraw():
currentTime = time()
# set up projection matrix
prjMat = perspective( 90.0, wndW/wndH, 0.5, 100.0)
# set up view matrix
viewMat = Translate( np.matrix(np.identity(4), copy=False, dtype='float32'), np.array( [0.0, 0.0, -8.0] ) )
viewMat = RotateView( viewMat, [10.0, CalcAng( currentTime, 10.0 ), 0.0] )
# set up tetrahedron model matrix
tetModelMat = np.matrix(np.identity(4), copy=False, dtype='float32')
tetModelMat = RotateX( tetModelMat, -90.0 )
tetModelMat = Scale( tetModelMat, np.repeat( 2.0, 3 ) )
tetModelMat = Translate( tetModelMat, np.array( [-2.0, 0.0, CalcMove(currentTime, 6.0, [-1.0, 1.0])] ) )
# set up icosahedron model matrix
icoModelMat = np.matrix(np.identity(4), copy=False, dtype='float32')
icoModelMat = RotateX( icoModelMat, -90.0 )
icoModelMat = Scale( icoModelMat, np.repeat( 2.0, 3 ) )
icoModelMat = Translate( icoModelMat, np.array( [2.0, 0.0, CalcMove(currentTime, 6.0, [1.0, -1.0])] ) )
# set up attributes and shader program
glEnable( GL_DEPTH_TEST )
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT )
glUseProgram( shaderProgram )
glUniformMatrix4fv( projectionMatLocation, 1, GL_FALSE, prjMat )
glUniformMatrix4fv( viewMatLocation, 1, GL_FALSE, viewMat )
# draw tetrahedron
glUniformMatrix4fv( modelMatLocation, 1, GL_FALSE, tetModelMat )
glBindVertexArray( tetVAObj )
glDrawElements(GL_TRIANGLES, len(tetIndices), GL_UNSIGNED_INT, tetIndices)
# draw tetrahedron
glUniformMatrix4fv( modelMatLocation, 1, GL_FALSE, icoModelMat )
glBindVertexArray( icoVAObj )
glDrawArrays( GL_TRIANGLES, 0, len(icoPosData) )
glutSwapBuffers()
def Fract(val): return val - math.trunc(val)
def CalcAng(currentTime, intervall): return Fract( (currentTime - startTime) / intervall ) * 360.0
def CalcMove(currentTime, intervall, range):
pos = Fract( (currentTime - startTime) / intervall ) * 2.0
pos = pos if pos < 1.0 else (2.0-pos)
return range[0] + (range[1] - range[0]) * pos
# read shader program and compile shader
def CompileShader( sourceFileName, shaderStage ):
with open( sourceFileName, 'r' ) as sourceFile:
sourceCode = sourceFile.read()
nameMap = { GL_VERTEX_SHADER: 'vertex', GL_FRAGMENT_SHADER: 'fragment' }
print( '\n%s shader code:' % nameMap.get(shaderStage, '') )
print( sourceCode )
shaderObj = glCreateShader( shaderStage )
glShaderSource( shaderObj, sourceCode )
glCompileShader( shaderObj )
result = glGetShaderiv( shaderObj, GL_COMPILE_STATUS )
if not (result):
print( glGetShaderInfoLog( shaderObj ) )
sys.exit()
return shaderObj
# linke shader objects to shader program
def LinkProgram( shaderObjs ):
shaderProgram = glCreateProgram()
for shObj in shaderObjs:
glAttachShader( shaderProgram, shObj )
glLinkProgram( shaderProgram )
result = glGetProgramiv( shaderProgram, GL_LINK_STATUS )
if not (result):
print( 'link error:' )
print( glGetProgramInfoLog( shaderProgram ) )
sys.exit()
return shaderProgram
# create vertex array opject
def CreateVAO( dataArrays ):
noOfBuffers = len(dataArrays)
buffers = glGenBuffers(noOfBuffers)
newVAObj = glGenVertexArrays( 1 )
glBindVertexArray( newVAObj )
for inx in range(0, noOfBuffers):
vertexSize, dataArr = dataArrays[inx]
arr = np.array( dataArr, dtype='float32' )
glBindBuffer( GL_ARRAY_BUFFER, buffers[inx] )
glBufferData( GL_ARRAY_BUFFER, arr, GL_STATIC_DRAW )
glEnableVertexAttribArray( inx )
glVertexAttribPointer( inx, vertexSize, GL_FLOAT, GL_FALSE, 0, None )
return newVAObj
def Translate(matA, trans):
matB = np.copy(matA)
for i in range(0, 4): matB[3,i] = matA[0,i] * trans[0] + matA[1,i] * trans[1] + matA[2,i] * trans[2] + matA[3,i]
return matB
def Scale(matA, s):
matB = np.copy(matA)
for i0 in range(0, 3):
for i1 in range(0, 4): matB[i0,i1] = matA[i0,i1] * s[i0]
return matB
def RotateHlp(matA, angDeg, a0, a1):
matB = np.copy(matA)
ang = math.radians(angDeg)
sinAng, cosAng = math.sin(ang), math.cos(ang)
for i in range(0, 4):
matB[a0,i] = matA[a0,i] * cosAng + matA[a1,i] * sinAng
matB[a1,i] = matA[a0,i] * -sinAng + matA[a1,i] * cosAng
return matB
def RotateX(matA, angDeg): return RotateHlp(matA, angDeg, 1, 2)
def RotateY(matA, angDeg): return RotateHlp(matA, angDeg, 2, 0)
def RotateZ(matA, angDeg): return RotateHlp(matA, angDeg, 0, 1)
def RotateView(matA, angDeg): return RotateZ(RotateY(RotateX(matA, angDeg[0]), angDeg[1]), angDeg[2])
def perspective(fov, aspectRatio, near, far):
fn, f_n = far + near, far - near
r, t = aspectRatio, 1.0 / math.tan( math.radians(fov) / 2.0 )
return np.matrix( [ [t/r,0,0,0], [0,t,0,0], [0,0,-fn/f_n,-2.0*far*near/f_n], [0,0,-1,0] ] )
# initialize glut
glutInit()
# create window
wndW, wndH = 800, 600
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH)
glutInitWindowPosition(0, 0)
glutInitWindowSize(wndW, wndH)
wndID = glutCreateWindow(b'OGL window')
glutDisplayFunc(OnDraw)
glutIdleFunc(OnDraw)
# define tetrahedron vertex array opject
sin120 = 0.8660254
tetPposData = [ 0.0, 0.0, 1.0, 0.0, -sin120, -0.5, sin120 * sin120, 0.5 * sin120, -0.5, -sin120 * sin120, 0.5 * sin120, -0.5 ]
tetColData = [ 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, ]
tetIndices = [ 0, 1, 2, 0, 2, 3, 0, 3, 1, 1, 3, 2 ]
tetVAObj = CreateVAO( [ (3, tetPposData), (3, tetColData) ] )
tetInxArr = np.array( tetIndices, dtype='uint' )
# define icosahedron vertex array opject
icoPts = [
[ 0.000, 0.000, 1.000], [ 0.894, 0.000, 0.447], [ 0.276, 0.851, 0.447], [-0.724, 0.526, 0.447],
[-0.724, -0.526, 0.447], [ 0.276, -0.851, 0.447], [ 0.724, 0.526, -0.447], [-0.276, 0.851, -0.447],
[-0.894, 0.000, -0.447], [-0.276, -0.851, -0.447], [ 0.724, -0.526, -0.447], [ 0.000, 0.000, -1.000] ]
icoCol = [ [1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.5, 0.0], [1.0, 0.0, 1.0] ]
icoIndices = [
2, 0, 1, 3, 0, 2, 4, 0, 3, 5, 0, 4, 1, 0, 5, 11, 7, 6, 11, 8, 7, 11, 9, 8, 11, 10, 9, 11, 6, 10,
1, 6, 2, 2, 7, 3, 3, 8, 4, 4, 9, 5, 5, 10, 1, 2, 6, 7, 3, 7, 8, 4, 8, 9, 5, 9, 10, 1, 10, 6 ]
icoPosData = []
for inx in icoIndices:
for inx_s in range(0, 3):
icoPosData.append( icoPts[inx][inx_s] )
icoColData = []
for inx in range(0, len(icoPosData) // 9):
inx_col = inx % len(icoCol)
for inx_p in range(0, 3):
for inx_s in range(0, 3):
icoColData.append( icoCol[inx_col][inx_s] )
icoVAObj = CreateVAO( [ (3, icoPosData), (3, icoColData) ] )
# load, compile and link shader
shaderProgram = LinkProgram( [
CompileShader( 'mvp.vert', GL_VERTEX_SHADER ),
CompileShader( 'mvp.frag', GL_FRAGMENT_SHADER )
] )
projectionMatLocation = glGetUniformLocation(shaderProgram, "projectionMat44")
viewMatLocation = glGetUniformLocation(shaderProgram, "viewMat44")
modelMatLocation = glGetUniformLocation(shaderProgram, "modelMat44")
# start main loop
startTime = time()
glutMainLoop()