This section provides an overview of what glsl is, and why a developer might want to use it.
It should also mention any large subjects within glsl, and link out to the related topics. Since the Documentation for glsl is new, you may need to create initial versions of those related topics.
GLSL Version | OpenGL version | Shader Preprocessor | Release Date |
---|---|---|---|
1.10 | 2.0 | #version 110 | 2004-09-07 |
1.20 | 2.1 | #version 120 | 2006-07-02 |
1.30 | 3.0 | #version 130 | 2008-08-11 |
1.40 | 3.1 | #version 140 | 2009-03-24 |
1.50 | 3.2 | #version 150 | 2009-08-03 |
3.30 | 3.3 | #version 330 | 2010-02-12 |
4.00 | 4.0 | #version 400 | 2010-03-11 |
4.10 | 4.1 | #version 410 | 2010-07-26 |
4.20 | 4.2 | #version 420 | 2011-08-08 |
4.30 | 4.3 | #version 430 | 2012-08-06 |
4.40 | 4.4 | #version 440 | 2013-07-22 |
4.50 | 4.5 | #version 450 | 2014-08-11 |
GLSL ES Version | OpenGL ES version | Shader Preprocessor | Release Date |
---|---|---|---|
1.00 ES | 2.0 | #version 100 | 2007-03-05 |
3.00 ES | 3.0 | #version 300 es | 2012-08-06 |
3.10 ES | 3.1 | #version 310 es | 2014-03-17 |
3.20 ES | 3.2 | #version 320 es | 2015-08-10 |
A simple OGL 4.0 GLSL shader program that shows that shows how to add details with tessellation shader to the geometry. The program is executed with a python script. To run the script, PyOpenGL and NumPy must be installed.
The basic mesh in this example is an icosahedron that consists of 20 triangles. The tessellation control shader defines how each triangle is divided into a set of many small parts. When tessellating a triangle, the generated data are barycentric coordinates based on the original triangle. The tessellation evaluation shader generates new geometry from the data obtained in this way. In this example, each triangle gets a peak in the middle, which rises outward from the center of the icosader. In this way a much more complex geometry is generated than the original icosahedron.
tess.vert
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec3 inNV;
out TVertexData
{
vec3 pos;
vec3 nv;
} outData;
uniform mat4 u_projectionMat44;
uniform mat4 u_modelViewMat44;
uniform mat3 u_normalMat33;
void main()
{
vec4 viewPos = u_modelViewMat44 * vec4( inPos, 1.0 );
outData.pos = viewPos.xyz / viewPos.w;
outData.nv = u_normalMat33 * normalize( inNV );
gl_Position = u_projectionMat44 * viewPos;
}
tess.tctrl
#version 400
layout( vertices=3 ) out;
in TVertexData
{
vec3 pos;
vec3 nv;
} inData[];
out TVertexData
{
vec3 pos;
vec3 nv;
} outData[];
void main()
{
outData[gl_InvocationID].pos = inData[gl_InvocationID].pos;
outData[gl_InvocationID].nv = inData[gl_InvocationID].nv;
if ( gl_InvocationID == 0 )
{
gl_TessLevelOuter[0] = 10.0;
gl_TessLevelOuter[1] = 10.0;
gl_TessLevelOuter[2] = 10.0;
gl_TessLevelInner[0] = 10.0;
}
}
tess.teval
#version 400
layout(triangles, equal_spacing, ccw) in;
in TVertexData
{
vec3 pos;
vec3 nv;
} inData[];
out TTessData
{
vec3 pos;
vec3 nv;
float height;
} outData;
uniform mat4 u_projectionMat44;
void main()
{
float sideLen[3] = float[3]
(
length( inData[1].pos - inData[0].pos ),
length( inData[2].pos - inData[1].pos ),
length( inData[0].pos - inData[2].pos )
);
float s = ( sideLen[0] + sideLen[1] + sideLen[2] ) / 2.0;
float rad = sqrt( (s - sideLen[0]) * (s - sideLen[1]) * (s - sideLen[2]) / s );
vec3 cpt = ( inData[0].pos + inData[1].pos + inData[2].pos ) / 3.0;
vec3 pos = inData[0].pos * gl_TessCoord.x + inData[1].pos * gl_TessCoord.y + inData[2].pos * gl_TessCoord.z;
vec3 nv = normalize( inData[0].nv * gl_TessCoord.x + inData[1].nv * gl_TessCoord.y + inData[2].nv * gl_TessCoord.z );
float cptDist = length( cpt - pos );
float sizeRelation = 1.0 - min( rad, cptDist ) / rad;
float height = pow( sizeRelation, 2.0 );
outData.pos = pos + nv * height * rad;
outData.nv = mix( nv, normalize( pos - cpt ), height );
outData.height = height;
gl_Position = u_projectionMat44 * vec4( outData.pos, 1.0 );
}
tess.frag
#version 400
in TTessData
{
vec3 pos;
vec3 nv;
float height;
} inData;
out vec4 fragColor;
uniform sampler2D u_texture;
uniform UB_material
{
float u_roughness;
float u_fresnel0;
vec4 u_color;
vec4 u_specularTint;
};
struct TLightSource
{
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 dir;
};
uniform UB_lightSource
{
TLightSource u_lightSource;
};
float Fresnel_Schlick( in float theta );
vec3 LightModel( in vec3 esPt, in vec3 esPtNV, in vec3 col, in vec4 specularTint, in float roughness, in float fresnel0 );
void main()
{
vec3 col = mix( u_color.rgb, vec3( 1.0, 1.0, 1.0 ), inData.height );
vec3 lightCol = LightModel( inData.pos, inData.nv, col, u_specularTint, u_roughness, u_fresnel0 );
fragColor = vec4( clamp( lightCol, 0.0, 1.0 ), 1.0 );
}
float Fresnel_Schlick( in float theta )
{
float m = clamp( 1.0 - theta, 0.0, 1.0 );
float m2 = m * m;
return m2 * m2 * m; // pow( m, 5.0 )
}
vec3 LightModel( in vec3 esPt, in vec3 esPtNV, in vec3 col, in vec4 specularTint, in float roughness, in float fresnel0 )
{
vec3 esVLight = normalize( -u_lightSource.dir.xyz );
vec3 esVEye = normalize( -esPt );
vec3 halfVector = normalize( esVEye + esVLight );
float HdotL = dot( halfVector, esVLight );
float NdotL = dot( esPtNV, esVLight );
float NdotV = dot( esPtNV, esVEye );
float NdotH = dot( esPtNV, halfVector );
float NdotH2 = NdotH * NdotH;
float NdotL_clamped = max( NdotL, 0.0 );
float NdotV_clamped = max( NdotV, 0.0 );
float m2 = roughness * roughness;
// Lambertian diffuse
float k_diffuse = NdotL_clamped;
// Schlick approximation
float fresnel = fresnel0 + ( 1.0 - fresnel0 ) * Fresnel_Schlick( HdotL );
// Beckmann distribution
float distribution = max( 0.0, exp( ( NdotH2 - 1.0 ) / ( m2 * NdotH2 ) ) / ( 3.14159265 * m2 * NdotH2 * NdotH2 ) );
// Torrance-Sparrow geometric term
float geometric_att = min( 1.0, min( 2.0 * NdotH * NdotV_clamped / HdotL, 2.0 * NdotH * NdotL_clamped / HdotL ) );
// Microfacet bidirectional reflectance distribution function
float k_specular = fresnel * distribution * geometric_att / ( 4.0 * NdotL_clamped * NdotV_clamped );
vec3 lightColor = col.rgb * u_lightSource.ambient.rgb +
max( 0.0, k_diffuse ) * col.rgb * u_lightSource.diffuse.rgb +
max( 0.0, k_specular ) * mix( col.rgb, specularTint.rgb, specularTint.a ) * u_lightSource.specular.rgb;
return lightColor;
}
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import numpy as np
from time import time
import math
import sys
sin120 = 0.8660254
rotateCamera = False
# draw event
def OnDraw():
dist = 3.0
currentTime = time()
comeraRotAng = CalcAng( currentTime, 10.0 )
# set up projection matrix
prjMat = Perspective(90.0, wndW/wndH, 0.5, 100.0)
# set up view matrix
viewMat = np.matrix(np.identity(4), copy=False, dtype='float32')
viewMat = Translate( viewMat, np.array( [0.0, 0.0, -12.0] ) )
viewMat = RotateView( viewMat, [30.0, comeraRotAng if rotateCamera else 0.0, 0.0] )
# set up light source
lightSourceBuffer.BindDataFloat(b'u_lightSource.dir', TransformVec4([-1.0, -1.0, -5.0, 0.0], viewMat) )
# set up icosahedron model matrix
icoModelMat = np.matrix(np.identity(4), copy=False, dtype='float32')
if not rotateCamera: icoModelMat = RotateY( icoModelMat, comeraRotAng )
icoModelMat = Scale( icoModelMat, np.repeat( 5, 3 ) )
icoModelMat = RotateY( icoModelMat, CalcAng( currentTime, 17.0 ) )
icoModelMat = RotateX( icoModelMat, CalcAng( currentTime, 13.0 ) )
# set up attributes and shader program
glEnable( GL_DEPTH_TEST )
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT )
glUseProgram( shaderProgram )
glUniformMatrix4fv( projectionMatLocation, 1, GL_FALSE, prjMat )
lightSourceBuffer.BindToTarget()
# draw icosahedron
icoMaterialBuffer.BindToTarget()
modelViewMat = Multiply(viewMat, icoModelMat)
glUniformMatrix4fv( modelViewMatLocation, 1, GL_FALSE, modelViewMat )
glUniformMatrix3fv( normalMatLocation, 1, GL_FALSE, ToMat33(modelViewMat) )
glBindVertexArray( icoVAObj )
glPatchParameteri( GL_PATCH_VERTICES, 3 )
glDrawArrays( GL_PATCHES, 0, len(icoPosData) )
glutSwapBuffers()
def Fract(val): return val - math.trunc(val)
def CalcAng(currentTime, intervall): return Fract( (currentTime - startTime) / intervall ) * 360.0
def CalcMove(currentTime, intervall, range):
pos = Fract( (currentTime - startTime) / intervall ) * 2.0
pos = pos if pos < 1.0 else (2.0-pos)
return range[0] + (range[1] - range[0]) * pos
# read shader program and compile shader
def CompileShader( sourceFileName, shaderStage ):
with open( sourceFileName, 'r' ) as sourceFile:
sourceCode = sourceFile.read()
nameMap = { GL_VERTEX_SHADER: 'vertex', GL_GEOMETRY_SHADER: 'geometry', GL_FRAGMENT_SHADER: 'fragment' }
print( '\n%s shader code:' % nameMap.get(shaderStage, '') )
print( sourceCode )
shaderObj = glCreateShader( shaderStage )
glShaderSource( shaderObj, sourceCode )
glCompileShader( shaderObj )
result = glGetShaderiv( shaderObj, GL_COMPILE_STATUS )
if not (result):
print( glGetShaderInfoLog( shaderObj ) )
sys.exit()
return shaderObj
# link shader objects to shader program
def LinkProgram( shaderObjs ):
shaderProgram = glCreateProgram()
for shObj in shaderObjs:
glAttachShader( shaderProgram, shObj )
glLinkProgram( shaderProgram )
result = glGetProgramiv( shaderProgram, GL_LINK_STATUS )
if not (result):
print( 'link error:' )
print( glGetProgramInfoLog( shaderProgram ) )
sys.exit()
return shaderProgram
# create vertex array object
def CreateVAO( dataArrays ):
noOfBuffers = len(dataArrays)
buffers = glGenBuffers(noOfBuffers)
newVAObj = glGenVertexArrays( 1 )
glBindVertexArray( newVAObj )
for inx in range(0, noOfBuffers):
vertexSize, dataArr = dataArrays[inx]
arr = np.array( dataArr, dtype='float32' )
glBindBuffer( GL_ARRAY_BUFFER, buffers[inx] )
glBufferData( GL_ARRAY_BUFFER, arr, GL_STATIC_DRAW )
glEnableVertexAttribArray( inx )
glVertexAttribPointer( inx, vertexSize, GL_FLOAT, GL_FALSE, 0, None )
return newVAObj
# representation of a uniform block
class UniformBlock:
def __init__(self, shaderProg, name):
self.shaderProg = shaderProg
self.name = name
def Link(self, bindingPoint):
self.bindingPoint = bindingPoint
self.noOfUniforms = glGetProgramiv(self.shaderProg, GL_ACTIVE_UNIFORMS)
self.maxUniformNameLen = glGetProgramiv(self.shaderProg, GL_ACTIVE_UNIFORM_MAX_LENGTH)
self.index = glGetUniformBlockIndex(self.shaderProg, self.name)
intData = np.zeros(1, dtype=int)
glGetActiveUniformBlockiv(self.shaderProg, self.index, GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS, intData)
self.count = intData[0]
self.indices = np.zeros(self.count, dtype=int)
glGetActiveUniformBlockiv(self.shaderProg, self.index, GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES, self.indices)
self.offsets = np.zeros(self.count, dtype=int)
glGetActiveUniformsiv(self.shaderProg, self.count, self.indices, GL_UNIFORM_OFFSET, self.offsets)
strLengthData = np.zeros(1, dtype=int)
arraysizeData = np.zeros(1, dtype=int)
typeData = np.zeros(1, dtype='uint32')
nameData = np.chararray(self.maxUniformNameLen+1)
self.namemap = {}
self.dataSize = 0
for inx in range(0, len(self.indices)):
glGetActiveUniform( self.shaderProg, self.indices[inx], self.maxUniformNameLen, strLengthData, arraysizeData, typeData, nameData.data )
name = nameData.tostring()[:strLengthData[0]]
self.namemap[name] = inx
self.dataSize = max(self.dataSize, self.offsets[inx] + arraysizeData * 16)
glUniformBlockBinding(self.shaderProg, self.index, self.bindingPoint)
print('\nuniform block %s size:%4d' % (self.name, self.dataSize))
for uName in self.namemap:
print( ' %-40s index:%2d offset:%4d' % (uName, self.indices[self.namemap[uName]], self.offsets[self.namemap [uName]]) )
# representation of a uniform block buffer
class UniformBlockBuffer:
def __init__(self, ub):
self.namemap = ub.namemap
self.offsets = ub.offsets
self.bindingPoint = ub.bindingPoint
self.object = glGenBuffers(1)
self.dataSize = ub.dataSize
glBindBuffer(GL_UNIFORM_BUFFER, self.object)
dataArray = np.zeros(self.dataSize//4, dtype='float32')
glBufferData(GL_UNIFORM_BUFFER, self.dataSize, dataArray, GL_DYNAMIC_DRAW)
def BindToTarget(self):
glBindBuffer(GL_UNIFORM_BUFFER, self.object)
glBindBufferBase(GL_UNIFORM_BUFFER, self.bindingPoint, self.object)
def BindDataFloat(self, name, dataArr):
glBindBuffer(GL_UNIFORM_BUFFER, self.object)
dataArray = np.array(dataArr, dtype='float32')
glBufferSubData(GL_UNIFORM_BUFFER, self.offsets[self.namemap[name]], len(dataArr)*4, dataArray)
def Translate(matA, trans):
matB = np.copy(matA)
for i in range(0, 4): matB[3,i] = matA[0,i] * trans[0] + matA[1,i] * trans[1] + matA[2,i] * trans[2] + matA[3,i]
return matB
def Scale(matA, s):
matB = np.copy(matA)
for i0 in range(0, 3):
for i1 in range(0, 4): matB[i0,i1] = matA[i0,i1] * s[i0]
return matB
def RotateHlp(matA, angDeg, a0, a1):
matB = np.copy(matA)
ang = math.radians(angDeg)
sinAng, cosAng = math.sin(ang), math.cos(ang)
for i in range(0, 4):
matB[a0,i] = matA[a0,i] * cosAng + matA[a1,i] * sinAng
matB[a1,i] = matA[a0,i] * -sinAng + matA[a1,i] * cosAng
return matB
def RotateX(matA, angDeg): return RotateHlp(matA, angDeg, 1, 2)
def RotateY(matA, angDeg): return RotateHlp(matA, angDeg, 2, 0)
def RotateZ(matA, angDeg): return RotateHlp(matA, angDeg, 0, 1)
def RotateView(matA, angDeg): return RotateZ(RotateY(RotateX(matA, angDeg[0]), angDeg[1]), angDeg[2])
def Multiply(matA, matB):
matC = np.copy(matA)
for i0 in range(0, 4):
for i1 in range(0, 4):
matC[i0,i1] = matB[i0,0] * matA[0,i1] + matB[i0,1] * matA[1,i1] + matB[i0,2] * matA[2,i1] + matB[i0,3] * matA[3,i1]
return matC
def ToMat33(mat44):
mat33 = np.matrix(np.identity(3), copy=False, dtype='float32')
for i0 in range(0, 3):
for i1 in range(0, 3): mat33[i0, i1] = mat44[i0, i1]
return mat33
def TransformVec4(vecA,mat44):
vecB = np.zeros(4, dtype='float32')
for i0 in range(0, 4):
vecB[i0] = vecA[0] * mat44[0,i0] + vecA[1] * mat44[1,i0] + vecA[2] * mat44[2,i0] + vecA[3] * mat44[3,i0]
return vecB
def Perspective(fov, aspectRatio, near, far):
fn, f_n = far + near, far - near
r, t = aspectRatio, 1.0 / math.tan( math.radians(fov) / 2.0 )
return np.matrix( [ [t/r,0,0,0], [0,t,0,0], [0,0,-fn/f_n,-2.0*far*near/f_n], [0,0,-1,0] ] )
def AddToBuffer( buffer, data, count=1 ):
for inx_c in range(0, count):
for inx_s in range(0, len(data)): buffer.append( data[inx_s] )
# initialize glut
glutInit()
# create window
wndW, wndH = 800, 600
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH)
glutInitWindowPosition(0, 0)
glutInitWindowSize(wndW, wndH)
wndID = glutCreateWindow(b'OGL window')
glutDisplayFunc(OnDraw)
glutIdleFunc(OnDraw)
# define icosahedron vertex array opject
icoPts = [
( 0.000, 0.000, 1.000), ( 0.894, 0.000, 0.447), ( 0.276, 0.851, 0.447), (-0.724, 0.526, 0.447),
(-0.724, -0.526, 0.447), ( 0.276, -0.851, 0.447), ( 0.724, 0.526, -0.447), (-0.276, 0.851, -0.447),
(-0.894, 0.000, -0.447), (-0.276, -0.851, -0.447), ( 0.724, -0.526, -0.447), ( 0.000, 0.000, -1.000) ]
icoCol = [ [1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.5, 0.0], [1.0, 0.0, 1.0] ]
icoIndices = [
2, 0, 1, 3, 0, 2, 4, 0, 3, 5, 0, 4, 1, 0, 5, 11, 7, 6, 11, 8, 7, 11, 9, 8, 11, 10, 9, 11, 6, 10,
1, 6, 2, 2, 7, 3, 3, 8, 4, 4, 9, 5, 5, 10, 1, 2, 6, 7, 3, 7, 8, 4, 8, 9, 5, 9, 10, 1, 10, 6 ]
icoPosData = []
for inx in icoIndices: AddToBuffer( icoPosData, icoPts[inx] )
icoNVData = []
for inx_nv in range(0, len(icoIndices) // 3):
nv = [0.0, 0.0, 0.0]
for inx_p in range(0, 3):
for inx_s in range(0, 3): nv[inx_s] += icoPts[ icoIndices[inx_nv*3 + inx_p] ][inx_s]
AddToBuffer( icoNVData, nv, 3 )
icoVAObj = CreateVAO( [ (3, icoPosData), (3, icoNVData) ] )
# load, compile and link shader
shaderProgram = LinkProgram( [
CompileShader( 'tess.vert', GL_VERTEX_SHADER ),
CompileShader( 'tess.tctrl', GL_TESS_CONTROL_SHADER ),
CompileShader( 'tess.teval', GL_TESS_EVALUATION_SHADER ),
CompileShader( 'tess.frag', GL_FRAGMENT_SHADER )
] )
# get unifor locations
projectionMatLocation = glGetUniformLocation(shaderProgram, "u_projectionMat44")
modelViewMatLocation = glGetUniformLocation(shaderProgram, "u_modelViewMat44")
normalMatLocation = glGetUniformLocation(shaderProgram, "u_normalMat33")
# linke uniform blocks
ubMaterial = UniformBlock(shaderProgram, "UB_material")
ubLightSource = UniformBlock(shaderProgram, "UB_lightSource")
ubMaterial.Link(1)
ubLightSource.Link(2)
# create uniform block buffers
lightSourceBuffer = UniformBlockBuffer(ubLightSource)
lightSourceBuffer.BindDataFloat(b'u_lightSource.ambient', [0.2, 0.2, 0.2, 1.0])
lightSourceBuffer.BindDataFloat(b'u_lightSource.diffuse', [0.2, 0.2, 0.2, 1.0])
lightSourceBuffer.BindDataFloat(b'u_lightSource.specular', [1.0, 1.0, 1.0, 1.0])
icoMaterialBuffer = UniformBlockBuffer(ubMaterial)
icoMaterialBuffer.BindDataFloat(b'u_roughness', [0.45])
icoMaterialBuffer.BindDataFloat(b'u_fresnel0', [0.4])
icoMaterialBuffer.BindDataFloat(b'u_color', [0.6, 0.5, 0.8, 1.0])
icoMaterialBuffer.BindDataFloat(b'u_specularTint',[1.0, 0.5, 0.5, 0.8])
# start main loop
startTime = time()
glutMainLoop()
A simple OGL 4.0 GLSL shader program that shows the use of geometry shaders. The program is executed with a phyton script. To run the script, PyOpenGL and NumPy must be installed.
In this example, the entire geometry (a cylinder) is generated in the geometry shader.
geo.vert
#version 400
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec3 inNormal;
layout (location = 2) in vec3 inTangent;
out TVertexData
{
mat3 orientationMat;
} outData;
void main()
{
vec3 normal = normalize( inNormal );
vec3 tangent = normalize( inTangent );
vec3 binormal = cross( tangent, normal );
outData.orientationMat = mat3( normal, cross( binormal, normal ), binormal );
gl_Position = vec4( inPos, 1.0 );
}
geo.geo
#version 400
layout( invocations = 3 ) in;
layout( points ) in;
layout( triangle_strip, max_vertices = 160 ) out;
in TVertexData
{
mat3 orientationMat;
} inData[];
out TGeometryData
{
vec3 pos;
vec3 nv;
vec3 col;
} outData;
uniform mat4 u_projectionMat44;
uniform mat4 u_viewMat44;
uniform mat4 u_modelMat44;
void NewVertex( in vec3 pt, in mat4 transMat )
{
vec4 viewPos = transMat * vec4( pt, 1.0 );
outData.pos = viewPos.xyz / viewPos.w;
gl_Position = u_projectionMat44 * viewPos;
EmitVertex();
}
const int circumferenceTile = 36;
void main()
{
vec4 origin = gl_in[0].gl_Position;
origin /= origin.w;
mat4 orintationMat = mat4( vec4( inData[0].orientationMat[0], 0.0 ),
vec4( inData[0].orientationMat[1], 0.0 ),
vec4( inData[0].orientationMat[2], 0.0 ),
origin );
mat4 modelViewMat = u_viewMat44 * u_modelMat44 * orintationMat;
mat3 normalMat = mat3( modelViewMat );
outData.col = vec3( 0.5, 0.7, 0.6 );
if ( gl_InvocationID == 0 ) // top of the cylinder
{
outData.nv = normalMat * vec3(0.0, 0.0, 1.0);
vec2 prevPt = vec2( 0.0, 1.0 );
for ( int inx = 1; inx <= circumferenceTile; inx += 2 )
{
float ang1 = 2.0 * 3.14159 * float(inx) / float(circumferenceTile);
float ang2 = 2.0 * 3.14159 * float(inx+1) / float(circumferenceTile);
vec2 actPt1 = vec2( sin(ang1), cos(ang1) );
vec2 actPt2 = vec2( sin(ang2), cos(ang2) );
NewVertex( vec3(prevPt.xy, 1.0), modelViewMat );
NewVertex( vec3(actPt1.xy, 1.0), modelViewMat );
NewVertex( vec3(0.0, 0.0, 1.0), modelViewMat );
NewVertex( vec3(actPt2.xy, 1.0), modelViewMat );
EndPrimitive();
prevPt = actPt2;
}
}
if ( gl_InvocationID == 1 ) // bottom of the cylinder
{
outData.nv = normalMat * vec3(0.0, 0.0, -1.0);
vec2 prevPt = vec2( 0.0, 1.0 );
for ( int inx = circumferenceTile-1; inx >= 0; inx -= 2 )
{
float ang1 = 2.0 * 3.14159 * float(inx) / float(circumferenceTile);
float ang2 = 2.0 * 3.14159 * float(inx-1) / float(circumferenceTile);
vec2 actPt1 = vec2( sin(ang1), cos(ang1) );
vec2 actPt2 = vec2( sin(ang2), cos(ang2) );
NewVertex( vec3(prevPt.xy, -1.0), modelViewMat );
NewVertex( vec3(actPt1.xy, -1.0), modelViewMat );
NewVertex( vec3(0.0, 0.0, -1.0), modelViewMat );
NewVertex( vec3(actPt2.xy, -1.0), modelViewMat );
EndPrimitive();
prevPt = actPt2;
}
}
if ( gl_InvocationID == 2 ) // hull of the cylinder
{
vec2 prevPt = vec2( 0.0, 1.0 );
for ( int inx = 1; inx <= circumferenceTile; ++ inx )
{
float ang = 2.0 * 3.14159 * float(inx) / float(circumferenceTile);
vec2 actPt = vec2( sin(ang), cos(ang) );
outData.nv = normalMat * vec3(prevPt, 0.0);
NewVertex( vec3(prevPt.xy, -1.0), modelViewMat );
outData.nv = normalMat * vec3(actPt, 0.0);
NewVertex( vec3(actPt.xy, -1.0), modelViewMat );
outData.nv = normalMat * vec3(prevPt, 0.0);
NewVertex( vec3(prevPt.xy, 1.0), modelViewMat );
outData.nv = normalMat * vec3(actPt, 0.0);
NewVertex( vec3(actPt.xy, 1.0), modelViewMat );
prevPt = actPt;
}
EndPrimitive();
}
}
geo.frag
#version 400
in TGeometryData
{
vec3 pos;
vec3 nv;
vec3 col;
} inData;
out vec4 fragColor;
uniform UB_material
{
float u_roughness;
float u_fresnel0;
vec4 u_specularTint;
};
struct TLightSource
{
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 dir;
};
uniform UB_lightSource
{
TLightSource u_lightSource;
};
float Fresnel_Schlick( float theta )
{
float m = clamp( 1.0 - theta, 0.0, 1.0 );
float m2 = m * m;
return m2 * m2 * m; // pow( m, 5.0 )
}
vec3 LightModel( vec3 esPt, vec3 esPtNV, vec3 col, vec4 specularTint, float roughness, float fresnel0 )
{
vec3 esVLight = normalize( -u_lightSource.dir.xyz );
vec3 esVEye = normalize( -esPt );
vec3 halfVector = normalize( esVEye + esVLight );
float HdotL = dot( halfVector, esVLight );
float NdotL = dot( esPtNV, esVLight );
float NdotV = dot( esPtNV, esVEye );
float NdotH = dot( esPtNV, halfVector );
float NdotH2 = NdotH * NdotH;
float NdotL_clamped = max( NdotL, 0.0 );
float NdotV_clamped = max( NdotV, 0.0 );
float m2 = roughness * roughness;
// Lambertian diffuse
float k_diffuse = NdotL_clamped;
// Schlick approximation
float fresnel = fresnel0 + ( 1.0 - fresnel0 ) * Fresnel_Schlick( HdotL );
// Beckmann distribution
float distribution = max( 0.0, exp( ( NdotH2 - 1.0 ) / ( m2 * NdotH2 ) ) / ( 3.14159265 * m2 * NdotH2 * NdotH2 ) );
// Torrance-Sparrow geometric term
float geometric_att = min( 1.0, min( 2.0 * NdotH * NdotV_clamped / HdotL, 2.0 * NdotH * NdotL_clamped / HdotL ) );
// Microfacet bidirectional reflectance distribution function
float k_specular = fresnel * distribution * geometric_att / ( 4.0 * NdotL_clamped * NdotV_clamped );
vec3 lightColor = col.rgb * u_lightSource.ambient.rgb +
max( 0.0, k_diffuse ) * col.rgb * u_lightSource.diffuse.rgb +
max( 0.0, k_specular ) * mix( col.rgb, specularTint.rgb, specularTint.a ) * u_lightSource.specular.rgb;
return lightColor;
}
void main()
{
vec3 lightCol = LightModel( inData.pos, inData.nv, inData.col, u_specularTint, u_roughness, u_fresnel0 );
fragColor = vec4( clamp( lightCol, 0.0, 1.0 ), 1.0 );
}
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import numpy as np
from time import time
import math
import sys
sin120 = 0.8660254
rotateCamera = False
# draw event
def OnDraw():
dist = 3.0
currentTime = time()
comeraRotAng = CalcAng( currentTime, 10.0 )
# set up projection matrix
prjMat = Perspective(90.0, wndW/wndH, 0.5, 100.0)
# set up view matrix
viewMat = np.matrix(np.identity(4), copy=False, dtype='float32')
viewMat = Translate( viewMat, np.array( [0.0, 0.0, -12.0] ) )
viewMat = RotateView( viewMat, [30.0, comeraRotAng if rotateCamera else 0.0, 0.0] )
# set up light source
lightSourceBuffer.BindDataFloat(b'u_lightSource.dir', TransformVec4([-0.1, 1.0, -5.0, 0.0], viewMat) )
# set up the model matrix
modelMat = np.matrix(np.identity(4), copy=False, dtype='float32')
if not rotateCamera: modelMat = RotateY( modelMat, comeraRotAng )
modelMat = Scale( modelMat, np.repeat( 4, 3 ) )
#modelMat = Translate( modelMat, np.array( [0.0, 0.0, 1.0] ) )
#modelMat = RotateY( modelMat, CalcAng( currentTime, 20.0 ) )
modelMat = RotateX( modelMat, CalcAng( currentTime, 9.0 ) )
# set up attributes and shader program
glEnable( GL_DEPTH_TEST )
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT )
glUseProgram( shaderProgram )
glUniformMatrix4fv( projectionMatLocation, 1, GL_FALSE, prjMat )
glUniformMatrix4fv( viewMatLocation, 1, GL_FALSE, viewMat )
lightSourceBuffer.BindToTarget()
# draw point
materialBuffer.BindToTarget()
glUniformMatrix4fv( modelMatLocation, 1, GL_FALSE, modelMat )
glBindVertexArray( pointVAObj )
glDrawArrays( GL_POINTS, 0, 1 )
glutSwapBuffers()
def Fract(val): return val - math.trunc(val)
def CalcAng(currentTime, intervall): return Fract( (currentTime - startTime) / intervall ) * 360.0
def CalcMove(currentTime, intervall, range):
pos = Fract( (currentTime - startTime) / intervall ) * 2.0
pos = pos if pos < 1.0 else (2.0-pos)
return range[0] + (range[1] - range[0]) * pos
# read shader program and compile shader
def CompileShader( sourceFileName, shaderStage ):
with open( sourceFileName, 'r' ) as sourceFile:
sourceCode = sourceFile.read()
nameMap = { GL_VERTEX_SHADER: 'vertex', GL_GEOMETRY_SHADER: 'geometry', GL_FRAGMENT_SHADER: 'fragment' }
print( '\n%s shader code:' % nameMap.get(shaderStage, '') )
print( sourceCode )
shaderObj = glCreateShader( shaderStage )
glShaderSource( shaderObj, sourceCode )
glCompileShader( shaderObj )
result = glGetShaderiv( shaderObj, GL_COMPILE_STATUS )
if not (result):
print( glGetShaderInfoLog( shaderObj ) )
sys.exit()
return shaderObj
# linke shader objects to shader program
def LinkProgram( shaderObjs ):
shaderProgram = glCreateProgram()
for shObj in shaderObjs:
glAttachShader( shaderProgram, shObj )
glLinkProgram( shaderProgram )
result = glGetProgramiv( shaderProgram, GL_LINK_STATUS )
if not (result):
print( 'link error:' )
print( glGetProgramInfoLog( shaderProgram ) )
sys.exit()
return shaderProgram
# create vertex array object
def CreateVAO( dataArrays ):
noOfBuffers = len(dataArrays)
buffers = glGenBuffers(noOfBuffers)
newVAObj = glGenVertexArrays( 1 )
glBindVertexArray( newVAObj )
for inx in range(0, noOfBuffers):
vertexSize, dataArr = dataArrays[inx]
arr = np.array( dataArr, dtype='float32' )
glBindBuffer( GL_ARRAY_BUFFER, buffers[inx] )
glBufferData( GL_ARRAY_BUFFER, arr, GL_STATIC_DRAW )
glEnableVertexAttribArray( inx )
glVertexAttribPointer( inx, vertexSize, GL_FLOAT, GL_FALSE, 0, None )
return newVAObj
# representation of a uniform block
class UniformBlock:
def __init__(self, shaderProg, name):
self.shaderProg = shaderProg
self.name = name
def Link(self, bindingPoint):
self.bindingPoint = bindingPoint
self.noOfUniforms = glGetProgramiv(self.shaderProg, GL_ACTIVE_UNIFORMS)
self.maxUniformNameLen = glGetProgramiv(self.shaderProg, GL_ACTIVE_UNIFORM_MAX_LENGTH)
self.index = glGetUniformBlockIndex(self.shaderProg, self.name)
intData = np.zeros(1, dtype=int)
glGetActiveUniformBlockiv(self.shaderProg, self.index, GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS, intData)
self.count = intData[0]
self.indices = np.zeros(self.count, dtype=int)
glGetActiveUniformBlockiv(self.shaderProg, self.index, GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES, self.indices)
self.offsets = np.zeros(self.count, dtype=int)
glGetActiveUniformsiv(self.shaderProg, self.count, self.indices, GL_UNIFORM_OFFSET, self.offsets)
strLengthData = np.zeros(1, dtype=int)
arraysizeData = np.zeros(1, dtype=int)
typeData = np.zeros(1, dtype='uint32')
nameData = np.chararray(self.maxUniformNameLen+1)
self.namemap = {}
self.dataSize = 0
for inx in range(0, len(self.indices)):
glGetActiveUniform( self.shaderProg, self.indices[inx], self.maxUniformNameLen, strLengthData, arraysizeData, typeData, nameData.data )
name = nameData.tostring()[:strLengthData[0]]
self.namemap[name] = inx
self.dataSize = max(self.dataSize, self.offsets[inx] + arraysizeData * 16)
glUniformBlockBinding(self.shaderProg, self.index, self.bindingPoint)
print('\nuniform block %s size:%4d' % (self.name, self.dataSize))
for uName in self.namemap:
print( ' %-40s index:%2d offset:%4d' % (uName, self.indices[self.namemap[uName]], self.offsets [self.namemap[uName]]) )
# representation of a uniform block buffer
class UniformBlockBuffer:
def __init__(self, ub):
self.namemap = ub.namemap
self.offsets = ub.offsets
self.bindingPoint = ub.bindingPoint
self.object = glGenBuffers(1)
self.dataSize = ub.dataSize
glBindBuffer(GL_UNIFORM_BUFFER, self.object)
dataArray = np.zeros(self.dataSize//4, dtype='float32')
glBufferData(GL_UNIFORM_BUFFER, self.dataSize, dataArray, GL_DYNAMIC_DRAW)
def BindToTarget(self):
glBindBuffer(GL_UNIFORM_BUFFER, self.object)
glBindBufferBase(GL_UNIFORM_BUFFER, self.bindingPoint, self.object)
def BindDataFloat(self, name, dataArr):
glBindBuffer(GL_UNIFORM_BUFFER, self.object)
dataArray = np.array(dataArr, dtype='float32')
glBufferSubData(GL_UNIFORM_BUFFER, self.offsets[self.namemap[name]], len(dataArr)*4, dataArray)
def Translate(matA, trans):
matB = np.copy(matA)
for i in range(0, 4): matB[3,i] = matA[0,i] * trans[0] + matA[1,i] * trans[1] + matA[2,i] * trans[2] + matA[3,i]
return matB
def Scale(matA, s):
matB = np.copy(matA)
for i0 in range(0, 3):
for i1 in range(0, 4): matB[i0,i1] = matA[i0,i1] * s[i0]
return matB
def RotateHlp(matA, angDeg, a0, a1):
matB = np.copy(matA)
ang = math.radians(angDeg)
sinAng, cosAng = math.sin(ang), math.cos(ang)
for i in range(0, 4):
matB[a0,i] = matA[a0,i] * cosAng + matA[a1,i] * sinAng
matB[a1,i] = matA[a0,i] * -sinAng + matA[a1,i] * cosAng
return matB
def RotateX(matA, angDeg): return RotateHlp(matA, angDeg, 1, 2)
def RotateY(matA, angDeg): return RotateHlp(matA, angDeg, 2, 0)
def RotateZ(matA, angDeg): return RotateHlp(matA, angDeg, 0, 1)
def RotateView(matA, angDeg): return RotateZ(RotateY(RotateX(matA, angDeg[0]), angDeg[1]), angDeg[2])
def Multiply(matA, matB):
matC = np.copy(matA)
for i0 in range(0, 4):
for i1 in range(0, 4):
matC[i0,i1] = matB[i0,0] * matA[0,i1] + matB[i0,1] * matA[1,i1] + matB[i0,2] * matA[2,i1] + matB[i0,3] * matA [3,i1]
return matC
def ToMat33(mat44):
mat33 = np.matrix(np.identity(3), copy=False, dtype='float32')
for i0 in range(0, 3):
for i1 in range(0, 3): mat33[i0, i1] = mat44[i0, i1]
return mat33
def TransformVec4(vecA,mat44):
vecB = np.zeros(4, dtype='float32')
for i0 in range(0, 4):
vecB[i0] = vecA[0] * mat44[0,i0] + vecA[1] * mat44[1,i0] + vecA[2] * mat44[2,i0] + vecA[3] * mat44[3,i0]
return vecB
def Perspective(fov, aspectRatio, near, far):
fn, f_n = far + near, far - near
r, t = aspectRatio, 1.0 / math.tan( math.radians(fov) / 2.0 )
return np.matrix( [ [t/r,0,0,0], [0,t,0,0], [0,0,-fn/f_n,-2.0*far*near/f_n], [0,0,-1,0] ] )
def AddToBuffer( buffer, data, count=1 ):
for inx_c in range(0, count):
for inx_s in range(0, len(data)): buffer.append( data[inx_s] )
# initialize glut
glutInit()
# create window
wndW, wndH = 800, 600
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH)
glutInitWindowPosition(0, 0)
glutInitWindowSize(wndW, wndH)
wndID = glutCreateWindow(b'OGL window')
glutDisplayFunc(OnDraw)
glutIdleFunc(OnDraw)
# define location vertex array opject
pointVAObj = CreateVAO( [ (3, [0.0, 0.0, 0.0] ), (3, [0.0, 0.0, -1.0]), (3, [1.0, 0.0, 0.0]) ] )
# load, compile and link shader
shaderProgram = LinkProgram( [
CompileShader( 'geo.vert', GL_VERTEX_SHADER ),
CompileShader( 'geo.geo', GL_GEOMETRY_SHADER ),
CompileShader( 'geo.frag', GL_FRAGMENT_SHADER )
] )
# get unifor locations
projectionMatLocation = glGetUniformLocation(shaderProgram, "u_projectionMat44")
viewMatLocation = glGetUniformLocation(shaderProgram, "u_viewMat44")
modelMatLocation = glGetUniformLocation(shaderProgram, "u_modelMat44")
# linke uniform blocks
ubMaterial = UniformBlock(shaderProgram, "UB_material")
ubLightSource = UniformBlock(shaderProgram, "UB_lightSource")
ubMaterial.Link(1)
ubLightSource.Link(2)
# create uniform block buffers
lightSourceBuffer = UniformBlockBuffer(ubLightSource)
lightSourceBuffer.BindDataFloat(b'u_lightSource.ambient', [0.2, 0.2, 0.2, 1.0])
lightSourceBuffer.BindDataFloat(b'u_lightSource.diffuse', [0.2, 0.2, 0.2, 1.0])
lightSourceBuffer.BindDataFloat(b'u_lightSource.specular', [1.0, 1.0, 1.0, 1.0])
materialBuffer = UniformBlockBuffer(ubMaterial)
materialBuffer.BindDataFloat(b'u_roughness', [0.5])
materialBuffer.BindDataFloat(b'u_fresnel0', [0.2])
materialBuffer.BindDataFloat(b'u_specularTint',[1.0, 0.5, 0.5, 0.8])
# start main loop
startTime = time()
glutMainLoop()
A simple OGL 4.0 GLSL shader program with vertex position and color attribute. The program is executed with a phyton script. To run the script, PyOpenGL must be installed.
A shader program consists at least of a vertex shader and a fragmant shader (exception of computer shaders). The 1st shader stage is the vertex shader and the last shader stage is the fragment shader (In between, optional further stages are possible, which are not further described here).
first.vet
The vertex shader processes the vertices and associated attributes specified by the drawing command. The vertex shader processes vertices from the input stream and can manipulate it in any desired way. A vertex shader receives one single vertex from the input stream and generates one single vertex to the output vertex stream.
In our example we draw a single triangle, so the vertex shader is executed 3 times, once for each corner point of the triangle.
In this case the input to the vertex shader is the vertex position in vec3 inPos
and the color attribute in vec3 inCol
. The color attributes
is passed to the next shader stage (out vec3 vertCol
).
#version 400
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec3 inCol;
out vec3 vertCol;
void main()
{
vertCol = inCol;
gl_Position = vec4( inPos, 1.0 );
}
first.frag
In this example, the fragment shader follows immediately after the vertex shader. The vertex positions and attributes are interpolated within each face for each fragment. The fragment shader is executed once for each fragment on the entire triangle and receives the color attribute from the frgment shader. Since a triangle is drawn the color attribute is interpolated according to the barycentric coordinates of the fragment based on the drawn triangle.
#version 400
in vec3 vertCol;
out vec4 fragColor;
void main()
{
fragColor = vec4( vertCol, 1.0 );
}
The python script is just to compile, link and execute the shader program and to draw geometry. It could be trivially rewritten in C or anything else. It is not the part of this documentation to which the greatest attention should be devoted.
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
from sys import *
from array import array
# draw event
def OnDraw():
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT )
glUseProgram( shaderProgram )
glBindVertexArray( vaObj )
glDrawArrays( GL_TRIANGLES, 0, 3 )
glutSwapBuffers()
# read vertex shader program
with open( 'first.vert', 'r' ) as vertFile:
vertCode = vertFile.read()
print( '\nvertex shader code:' )
print( vertCode )
# read fragment shader program
with open( 'first.frag', 'r' ) as fragFile:
fragCode = fragFile.read()
print( '\nfragment shader code:' )
print( fragCode )
# initialize glut
glutInit()
# create window
wndW = 800
wndH = 600
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH)
glutInitWindowPosition(0, 0)
glutInitWindowSize(wndW, wndH)
wndID = glutCreateWindow(b'OGL window')
glutDisplayFunc(OnDraw)
glutIdleFunc(OnDraw)
# define triangle data
posData = [ -0.636, -0.45, 0.0, 0.636, -0.45, 0.0, 0.0, 0.9, 0.0 ]
colData = [ 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0 ]
posAr = array( "f", posData )
colAr = array( "f", colData )
# create buffers
posBuffer = glGenBuffers(1)
glBindBuffer( GL_ARRAY_BUFFER, posBuffer )
glBufferData( GL_ARRAY_BUFFER, posAr.tostring(), GL_STATIC_DRAW )
colBuffer = glGenBuffers(1)
glBindBuffer( GL_ARRAY_BUFFER, colBuffer )
glBufferData( GL_ARRAY_BUFFER, colAr.tostring(), GL_STATIC_DRAW )
# create vertex array opject
vaObj = glGenVertexArrays( 1 )
glBindVertexArray( vaObj )
glEnableVertexAttribArray( 0 )
glEnableVertexAttribArray( 1 )
glBindBuffer( GL_ARRAY_BUFFER, posBuffer )
glVertexAttribPointer( 0, 3, GL_FLOAT, GL_FALSE, 0, None )
glBindBuffer( GL_ARRAY_BUFFER, colBuffer )
glVertexAttribPointer( 1, 3, GL_FLOAT, GL_FALSE, 0, None )
# compile vertex shader
vertShader = glCreateShader( GL_VERTEX_SHADER )
glShaderSource( vertShader, vertCode )
glCompileShader( vertShader )
result = glGetShaderiv( vertShader, GL_COMPILE_STATUS )
if not (result):
print( glGetShaderInfoLog( vertShader ) )
sys.exit()
# compile fragment shader
fragShader = glCreateShader( GL_FRAGMENT_SHADER )
glShaderSource( fragShader, fragCode )
glCompileShader( fragShader )
result = glGetShaderiv( fragShader, GL_COMPILE_STATUS )
if not (result):
print( glGetShaderInfoLog( fragShader ) )
sys.exit()
# link shader program
shaderProgram = glCreateProgram()
glAttachShader( shaderProgram, vertShader )
glAttachShader( shaderProgram, fragShader )
glLinkProgram( shaderProgram )
result = glGetProgramiv( shaderProgram, GL_LINK_STATUS )
if not (result):
print( 'link error:' )
print( glGetProgramInfoLog( shaderProgram ) )
sys.exit()
# start main loop
glutMainLoop()
Detailed instructions on getting glsl set up or installed.
A simple OGL 4.0 GLSL shader program that shows how to map a 2D texture on a mesh. The program is executed with a phyton script. To run the script, PyOpenGL and NumPy must be installed.
The texture matrix defines how the texture is mapped on the mesh. By manipulating the texture matrix, the texture can be displaced, scaled and rotated.
tex.vert
#version 400
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec2 inTex;
out vec2 vertTex;
uniform mat4 u_projectionMat44;
uniform mat4 u_viewMat44;
uniform mat4 u_modelMat44;
uniform mat4 u_textureMat44;
void main()
{
vertTex = ( u_textureMat44 * vec4( inTex, 0.0, 1.0 ) ).st;
vec4 modolPos = u_modelMat44 * vec4( inPos, 1.0 );
vec4 viewPos = u_viewMat44 * modolPos;
gl_Position = u_projectionMat44 * viewPos;
}
tex.frag
#version 400
in vec2 vertTex;
out vec4 fragColor;
uniform sampler2D u_texture;
void main()
{
vec4 texCol = texture( u_texture, vertTex.st );
fragColor = vec4( texCol.rgb, 1.0 );
}
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import numpy as np
from time import time
import math
import sys
# draw event
def OnDraw():
currentTime = time()
# set up projection matrix
prjMat = perspective( 90.0, wndW/wndH, 0.5, 100.0)
# set up view matrix
viewMat = Translate( np.matrix(np.identity(4), copy=False, dtype='float32'), np.array( [0.0, 0.0, -15.0] ) )
viewMat = RotateView( viewMat, [30.0, CalcAng( currentTime, 60.0 ), 0.0] )
# set up tetrahedron model matrix
cubeModelMat = np.matrix(np.identity(4), copy=False, dtype='float32')
cubeModelMat = RotateX( cubeModelMat, -90.0 )
cubeModelMat = Scale( cubeModelMat, np.repeat( 5.0, 3 ) )
# set up texture matrix
texMat = np.matrix(np.identity(4), copy=False, dtype='float32')
deltaT = Fract( (currentTime - startTime) / 28.0 ) * 28.0
if deltaT < 7.0 or deltaT >= 21.0:
texMat = Scale( texMat, np.repeat( CalcMove(currentTime, 7.0, [1.0, 2.0]), 3 ) )
if deltaT >= 7.0 and deltaT < 14.0 or deltaT >= 21.0:
transAng = math.radians( CalcAng(currentTime, 7.0) )
texMat = Translate( texMat, np.array( [math.sin(transAng)*0.5, math.cos(transAng)*0.5-0.5, 0.0] ) )
if deltaT >= 14.0:
texMat = RotateZ( texMat, CalcAng(currentTime, 7.0) )
# set up attributes and shader program
glEnable( GL_DEPTH_TEST )
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT )
glUseProgram( shaderProgram )
glUniformMatrix4fv( projectionMatLocation, 1, GL_FALSE, prjMat )
glUniformMatrix4fv( viewMatLocation, 1, GL_FALSE, viewMat )
glUniformMatrix4fv( textureMatLocation, 1, GL_FALSE, texMat )
glUniform1i( textureLocation, 0 )
# draw cube
glUniformMatrix4fv( modelMatLocation, 1, GL_FALSE, cubeModelMat )
glBindVertexArray( cubeVAObj )
glDrawElements(GL_TRIANGLES, len(cubeIndices), GL_UNSIGNED_INT, cubeIndices)
glutSwapBuffers()
def Fract(val): return val - math.trunc(val)
def CalcAng(currentTime, intervall): return Fract( (currentTime - startTime) / intervall ) * 360.0
def CalcMove(currentTime, intervall, range):
pos = Fract( (currentTime - startTime) / intervall ) * 2.0
pos = pos if pos < 1.0 else (2.0-pos)
return range[0] + (range[1] - range[0]) * pos
# read shader program and compile shader
def CompileShader( sourceFileName, shaderStage ):
with open( sourceFileName, 'r' ) as sourceFile:
sourceCode = sourceFile.read()
nameMap = { GL_VERTEX_SHADER: 'vertex', GL_FRAGMENT_SHADER: 'fragment' }
print( '\n%s shader code:' % nameMap.get(shaderStage, '') )
print( sourceCode )
shaderObj = glCreateShader( shaderStage )
glShaderSource( shaderObj, sourceCode )
glCompileShader( shaderObj )
result = glGetShaderiv( shaderObj, GL_COMPILE_STATUS )
if not (result):
print( glGetShaderInfoLog( shaderObj ) )
sys.exit()
return shaderObj
# linke shader objects to shader program
def LinkProgram( shaderObjs ):
shaderProgram = glCreateProgram()
for shObj in shaderObjs:
glAttachShader( shaderProgram, shObj )
glLinkProgram( shaderProgram )
result = glGetProgramiv( shaderProgram, GL_LINK_STATUS )
if not (result):
print( 'link error:' )
print( glGetProgramInfoLog( shaderProgram ) )
sys.exit()
return shaderProgram
# create vertex array object
def CreateVAO( dataArrays ):
noOfBuffers = len(dataArrays)
buffers = glGenBuffers(noOfBuffers)
newVAObj = glGenVertexArrays( 1 )
glBindVertexArray( newVAObj )
for inx in range(0, noOfBuffers):
vertexSize, dataArr = dataArrays[inx]
arr = np.array( dataArr, dtype='float32' )
glBindBuffer( GL_ARRAY_BUFFER, buffers[inx] )
glBufferData( GL_ARRAY_BUFFER, arr, GL_STATIC_DRAW )
glEnableVertexAttribArray( inx )
glVertexAttribPointer( inx, vertexSize, GL_FLOAT, GL_FALSE, 0, None )
return newVAObj
def Translate(matA, trans):
matB = np.copy(matA)
for i in range(0, 4): matB[3,i] = matA[0,i] * trans[0] + matA[1,i] * trans[1] + matA[2,i] * trans[2] + matA[3,i]
return matB
def Scale(matA, s):
matB = np.copy(matA)
for i0 in range(0, 3):
for i1 in range(0, 4): matB[i0,i1] = matA[i0,i1] * s[i0]
return matB
def RotateHlp(matA, angDeg, a0, a1):
matB = np.copy(matA)
ang = math.radians(angDeg)
sinAng, cosAng = math.sin(ang), math.cos(ang)
for i in range(0, 4):
matB[a0,i] = matA[a0,i] * cosAng + matA[a1,i] * sinAng
matB[a1,i] = matA[a0,i] * -sinAng + matA[a1,i] * cosAng
return matB
def RotateX(matA, angDeg): return RotateHlp(matA, angDeg, 1, 2)
def RotateY(matA, angDeg): return RotateHlp(matA, angDeg, 2, 0)
def RotateZ(matA, angDeg): return RotateHlp(matA, angDeg, 0, 1)
def RotateView(matA, angDeg): return RotateZ(RotateY(RotateX(matA, angDeg[0]), angDeg[1]), angDeg[2])
def perspective(fov, aspectRatio, near, far):
fn, f_n = far + near, far - near
r, t = aspectRatio, 1.0 / math.tan( math.radians(fov) / 2.0 )
return np.matrix( [ [t/r,0,0,0], [0,t,0,0], [0,0,-fn/f_n,-2.0*far*near/f_n], [0,0,-1,0] ] )
# initialize glut
glutInit()
# create window
wndW, wndH = 800, 600
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH)
glutInitWindowPosition(0, 0)
glutInitWindowSize(wndW, wndH)
wndID = glutCreateWindow(b'OGL window')
glutDisplayFunc(OnDraw)
glutIdleFunc(OnDraw)
# define cube vertex array opject
icoPts = [
[-1.0, -1.0, 1.0], [ 1.0, -1.0, 1.0], [ 1.0, 1.0, 1.0], [-1.0, 1.0, 1.0],
[-1.0, -1.0, -1.0], [ 1.0, -1.0, -1.0], [ 1.0, 1.0, -1.0], [-1.0, 1.0, -1.0] ]
cubePosData = []
for inx in [ 0, 1, 2, 3, 1, 5, 6, 2, 5, 4, 7, 6, 4, 0, 3, 7, 3, 2, 6, 7, 1, 0, 4, 5 ]:
for inx_s in range(0, 3): cubePosData.append( icoPts[inx][inx_s] )
cubeTexData = []
for inx in range(0, 6):
for texCoord in [-0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, 0.5]: cubeTexData.append( texCoord )
icoCol = [ [1.0, 0.0, 0.0], [1.0, 0.5, 0.0], [1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0] ]
cubeIndices = []
for inx in range(0, 6):
for inx_s in [0, 1, 2, 0, 2, 3]: cubeIndices.append( inx * 4 + inx_s )
cubeVAObj = CreateVAO( [ (3, cubePosData), (2, cubeTexData) ] )
cubeInxArr = np.array( cubeIndices, dtype='uint' )
# load, compile and link shader
shaderProgram = LinkProgram( [
CompileShader( 'python/ogl4tex/tex.vert', GL_VERTEX_SHADER ),
CompileShader( 'python/ogl4tex/tex.frag', GL_FRAGMENT_SHADER )
] )
projectionMatLocation = glGetUniformLocation(shaderProgram, "u_projectionMat44")
viewMatLocation = glGetUniformLocation(shaderProgram, "u_viewMat44")
modelMatLocation = glGetUniformLocation(shaderProgram, "u_modelMat44")
textureMatLocation = glGetUniformLocation(shaderProgram, "u_textureMat44")
textureLocation = glGetUniformLocation(shaderProgram, "u_texture")
# create texture
texCX, texCY = 128, 128
texPlan = np.zeros( texCX * texCY * 4, dtype=np.uint8 )
for inx_x in range(0, texCX):
for inx_y in range(0, texCY):
val_x = math.sin( math.pi * 6.0 * inx_x / texCX )
val_y = math.sin( math.pi * 6.0 * inx_y / texCY )
inx_tex = inx_y * texCX * 4 + inx_x * 4
texPlan[inx_tex + 0] = int( 128 + 127 * val_x )
texPlan[inx_tex + 1] = 63
texPlan[inx_tex + 2] = int( 128 + 127 * val_y )
texPlan[inx_tex + 3] = 255
glActiveTexture( GL_TEXTURE0 )
texObj = glGenTextures( 1 )
glBindTexture( GL_TEXTURE_2D, texObj )
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, texCX, texCY, 0, GL_RGBA, GL_UNSIGNED_BYTE, texPlan)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT)
# start main loop
startTime = time()
glutMainLoop()
A simple OGL 4.0 GLSL shader program that shows the use shader subroutines. The program is executed with a phyton script. To run the script, PyOpenGL and NumPy must be installed.
The subroutines switch between different geometry generated in the geometry shader and change the surface representation.
subr.vert
#version 400
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec3 inNormal;
layout (location = 2) in vec3 inTangent;
out TVertexData
{
mat3 orientationMat;
} outData;
void main()
{
vec3 normal = normalize( inNormal );
vec3 tangent = normalize( inTangent );
vec3 binormal = cross( tangent, normal );
outData.orientationMat = mat3( normal, cross( binormal, normal ), binormal );
gl_Position = vec4( inPos, 1.0 );
}
subr.geo
#version 400
layout( points ) in;
layout( triangle_strip, max_vertices = 512 ) out;
in TVertexData
{
mat3 orientationMat;
} inData[];
out TGeometryData
{
vec3 pos;
vec3 nv;
vec2 tex;
} outData;
uniform mat4 u_projectionMat44;
uniform mat4 u_viewMat44;
uniform mat4 u_modelMat44;
uniform mat4 u_textureMat44;
void SetTextureCoord( in vec2 tecCoord )
{
vec4 tex = u_textureMat44 * vec4( tecCoord, 0.0, 1.0 );
outData.tex = tex.xy;
}
void NewVertex( in vec3 pt, in mat4 transMat )
{
vec4 viewPos = transMat * vec4( pt, 1.0 );
outData.pos = viewPos.xyz / viewPos.w;
gl_Position = u_projectionMat44 * viewPos;
EmitVertex();
}
void NewVertexAndTex( in vec3 pt, in mat4 transMat )
{
SetTextureCoord( pt.xy * 0.5 + 0.5 );
NewVertex( pt, transMat );
}
void NewVertexNvTex( in vec3 pt, in mat4 transMat, in vec3 nv, in vec2 tex )
{
outData.nv = nv;
SetTextureCoord( tex );
vec4 viewPos = transMat * vec4( pt, 1.0 );
outData.pos = viewPos.xyz / viewPos.w;
gl_Position = u_projectionMat44 * viewPos;
EmitVertex();
}
subroutine void TShape( in mat4 );
subroutine uniform TShape su_shape;
void main()
{
vec4 origin = gl_in[0].gl_Position;
origin /= origin.w;
mat4 orintationMat = mat4( vec4( inData[0].orientationMat[0], 0.0 ),
vec4( inData[0].orientationMat[1], 0.0 ),
vec4( inData[0].orientationMat[2], 0.0 ),
origin );
mat4 modelMat = u_modelMat44 * orintationMat;
su_shape( modelMat );
}
subroutine(TShape) void DrawSphere( in mat4 modelMat )
{
const int circumferenceTile = 18;
const int layersTile = 11;
mat4 modelViewMat = u_viewMat44 * modelMat;
mat3 normalMat = mat3( modelViewMat );
float preStepLay = 0.0;
vec2 prePtLay = vec2( 0.0, -1.0 );
for ( int inxLay = 1; inxLay <= layersTile; ++ inxLay )
{
float stepLay = float(inxLay) / float(layersTile);
float angLay = 3.14159 * stepLay;
vec2 ptLay = vec2( sin(angLay), -cos(angLay) );
float preStepCir = 0.0;
vec2 prePtCir = vec2( 0.0, 1.0 );
for ( int inxCir = 0; inxCir <= circumferenceTile; ++ inxCir )
{
float stepCir = float(inxCir) / float(circumferenceTile);
float angCir = 2.0 * 3.14159 * stepCir;
vec2 ptCir = vec2( sin(angCir), cos(angCir) );
if ( inxLay == 1 )
{
if ( inxCir >= 0 )
{
vec3 pt1 = vec3( ptLay.x * prePtCir.x, ptLay.x * prePtCir.y, ptLay.y );
vec3 pt2 = vec3( 0.0, 0.0, -1.0 );
vec3 pt3 = vec3( ptLay.x * ptCir.x, ptLay.x * ptCir.y, ptLay.y );
NewVertexNvTex( pt1, modelViewMat, normalMat * pt1, vec2( preStepCir * 2.0, stepLay ) );
NewVertexNvTex( pt2, modelViewMat, normalMat * pt2, vec2( preStepCir + stepCir, preStepLay ) );
NewVertexNvTex( pt3, modelViewMat, normalMat * pt3, vec2( stepCir * 2.0, stepLay ) );
EndPrimitive();
}
}
else if ( inxLay == layersTile )
{
if ( inxCir > 0 )
{
vec3 pt1 = vec3( prePtLay.x * prePtCir.x, prePtLay.x * prePtCir.y, prePtLay.y );
vec3 pt2 = vec3( prePtLay.x * ptCir.x, prePtLay.x * ptCir.y, prePtLay.y );
vec3 pt3 = vec3( 0.0, 0.0, 1.0 );
NewVertexNvTex( pt1, modelViewMat, normalMat * pt1, vec2( preStepCir * 2.0, preStepLay ) );
NewVertexNvTex( pt2, modelViewMat, normalMat * pt2, vec2( stepCir * 2.0, preStepLay ) );
NewVertexNvTex( pt3, modelViewMat, normalMat * pt3, vec2( preStepCir + stepCir, stepLay ) );
EndPrimitive();
}
}
else
{
vec3 pt1 = vec3( prePtLay.x * ptCir.x, prePtLay.x * ptCir.y, prePtLay.y );
vec3 pt2 = vec3( ptLay.x * ptCir.x, ptLay.x * ptCir.y, ptLay.y );
NewVertexNvTex( pt1, modelViewMat, normalMat * pt1, vec2( stepCir * 2.0, preStepLay ) );
NewVertexNvTex( pt2, modelViewMat, normalMat * pt2, vec2( stepCir * 2.0, stepLay ) );
}
preStepCir = stepCir;
prePtCir = ptCir;
}
if ( inxLay > 1 && inxLay < layersTile )
EndPrimitive();
preStepLay = stepLay;
prePtLay = ptLay;
}
}
subroutine(TShape) void DrawTorus( in mat4 modelMat )
{
const int circumferenceTile = 12;
const int layersTile = 18;
const float torusRad = 0.8;
const float ringRad = 0.4;
mat4 modelViewMat = u_viewMat44 * modelMat;
mat3 normalMat = mat3( modelViewMat );
float preStepLay = 0.0;
mat4 prePosMat;
for ( int inxLay = 0; inxLay <= layersTile; ++ inxLay )
{
float stepLay = float(inxLay) / float(layersTile);
float angLay = 2.0 * 3.14159 * stepLay;
mat4 posMat = mat4(
vec4( cos(angLay), sin(angLay), 0.0, 0.0 ),
vec4( sin(angLay), cos(angLay), 0.0, 0.0 ),
vec4( 0.0, 0.0, 1.0, 0.0 ),
vec4( cos(angLay) * torusRad, sin(angLay) * torusRad, 0.0, 1.0 ) );
for ( int inxCir = 0; inxLay > 0 && inxCir <= circumferenceTile; ++ inxCir )
{
float stepCir = float(inxCir) / float(circumferenceTile);
float angCir = 2.0 * 3.14159 * stepCir;
vec2 ptCir = vec2( sin(angCir), cos(angCir) );
vec4 tempPt = vec4( ptCir.x * ringRad, 0.0, ptCir.y * ringRad, 1.0 );
vec4 pt1 = prePosMat * tempPt;
vec4 pt2 = posMat * tempPt;
NewVertexNvTex( pt1.xyz, modelViewMat, normalMat * normalize(pt1.xyz - prePosMat[3].xyz), vec2(stepCir, preStepLay*2.0) );
NewVertexNvTex( pt2.xyz, modelViewMat, normalMat * normalize(pt2.xyz - posMat[3].xyz), vec2(stepCir, stepLay*2.0) );
}
EndPrimitive();
preStepLay = stepLay;
prePosMat = posMat;
}
}
subr.frag
#version 400
in TGeometryData
{
vec3 pos;
vec3 nv;
vec2 tex;
} inData;
out vec4 fragColor;
uniform sampler2D u_texture;
uniform UB_material
{
float u_roughness;
float u_fresnel0;
vec4 u_color;
vec4 u_specularTint;
};
struct TLightSource
{
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 dir;
};
uniform UB_lightSource
{
TLightSource u_lightSource;
};
subroutine vec4 TSurface( void );
subroutine uniform TSurface su_surface;
float Fresnel_Schlick( in float theta );
vec3 LightModel( in vec3 esPt, in vec3 esPtNV, in vec3 col, in vec4 specularTint, in float roughness, in float fresnel0 );
void main()
{
vec4 fragCol = su_surface();
vec3 lightCol = LightModel( inData.pos, inData.nv, fragCol.rgb, u_specularTint, u_roughness, u_fresnel0 );
fragColor = vec4( clamp( lightCol, 0.0, 1.0 ), fragCol.a );
}
subroutine(TSurface) vec4 SurfaceColor( void )
{
return u_color;
}
subroutine(TSurface) vec4 SurfaceTexture( void )
{
return texture( u_texture, inData.tex.st );
}
float Fresnel_Schlick( in float theta )
{
float m = clamp( 1.0 - theta, 0.0, 1.0 );
float m2 = m * m;
return m2 * m2 * m; // pow( m, 5.0 )
}
vec3 LightModel( in vec3 esPt, in vec3 esPtNV, in vec3 col, in vec4 specularTint, in float roughness, in float fresnel0 )
{
vec3 esVLight = normalize( -u_lightSource.dir.xyz );
vec3 esVEye = normalize( -esPt );
vec3 halfVector = normalize( esVEye + esVLight );
float HdotL = dot( halfVector, esVLight );
float NdotL = dot( esPtNV, esVLight );
float NdotV = dot( esPtNV, esVEye );
float NdotH = dot( esPtNV, halfVector );
float NdotH2 = NdotH * NdotH;
float NdotL_clamped = max( NdotL, 0.0 );
float NdotV_clamped = max( NdotV, 0.0 );
float m2 = roughness * roughness;
// Lambertian diffuse
float k_diffuse = NdotL_clamped;
// Schlick approximation
float fresnel = fresnel0 + ( 1.0 - fresnel0 ) * Fresnel_Schlick( HdotL );
// Beckmann distribution
float distribution = max( 0.0, exp( ( NdotH2 - 1.0 ) / ( m2 * NdotH2 ) ) / ( 3.14159265 * m2 * NdotH2 * NdotH2 ) );
// Torrance-Sparrow geometric term
float geometric_att = min( 1.0, min( 2.0 * NdotH * NdotV_clamped / HdotL, 2.0 * NdotH * NdotL_clamped / HdotL ) );
// Microfacet bidirectional reflectance distribution function
float k_specular = fresnel * distribution * geometric_att / ( 4.0 * NdotL_clamped * NdotV_clamped );
vec3 lightColor = col.rgb * u_lightSource.ambient.rgb +
max( 0.0, k_diffuse ) * col.rgb * u_lightSource.diffuse.rgb +
max( 0.0, k_specular ) * mix( col.rgb, specularTint.rgb, specularTint.a ) * u_lightSource.specular.rgb;
return lightColor;
}
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import numpy as np
from time import time
import math
import sys
sin120 = 0.8660254
rotateCamera = False
# draw event
def OnDraw():
dist = 3.0
currentTime = time()
comeraRotAng = CalcAng( currentTime, 10.0 )
# set up projection matrix
prjMat = Perspective(90.0, wndW/wndH, 0.5, 100.0)
# set up view matrix
viewMat = np.matrix(np.identity(4), copy=False, dtype='float32')
viewMat = Translate( viewMat, np.array( [0.0, 0.0, -14.0] ) )
viewMat = RotateView( viewMat, [30.0, comeraRotAng if rotateCamera else 0.0, 0.0] )
# set up light source
lightSourceBuffer.BindDataFloat(b'u_lightSource.dir', TransformVec4([-1.0, -1.0, -5.0, 0.0], viewMat) )
# set up model matrices
modelMat = []
for inx in range(0, 2):
modelMat.append( np.matrix(np.identity(4), copy=False, dtype='float32') )
if not rotateCamera: modelMat[inx] = RotateY( modelMat[inx], comeraRotAng )
modelMat[0] = Scale( modelMat[0], np.repeat( 3, 3 ) )
modelMat[0] = Translate( modelMat[0], np.array( [0.0, 0.0, -2.0] ) )
modelMat[0] = RotateY( modelMat[0], CalcAng( currentTime, 23.0 ) )
modelMat[0] = RotateX( modelMat[0], CalcAng( currentTime, 13.0 ) )
modelMat[1] = Scale( modelMat[1], np.repeat( 3, 3 ) )
modelMat[1] = Translate( modelMat[1], np.array( [0.0, 0.0, 2.0] ) )
modelMat[1] = RotateY( modelMat[1], CalcAng( currentTime, 17.0 ) )
modelMat[1] = RotateX( modelMat[1], CalcAng( currentTime, 9.0 ) )
# set up texture matrix
texMat = np.matrix(np.identity(4), copy=False, dtype='float32')
# set up attributes and shader program
glEnable( GL_DEPTH_TEST )
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT )
glUseProgram( shaderProgram )
glUniformMatrix4fv( projectionMatLocation, 1, GL_FALSE, prjMat )
glUniformMatrix4fv( viewMatLocation, 1, GL_FALSE, viewMat )
glUniformMatrix4fv( textureMatLocation, 1, GL_FALSE, texMat )
glUniform1i( textureLocation, 0 )
lightSourceBuffer.BindToTarget()
# draw points
glBindVertexArray( pointVAObj )
for inx in range(0, 2):
# set up geometry shader subroutine
shape = 1 if inx==0 else 0 # 0: sphere, 1: torus
glUniformSubroutinesuiv(GL_GEOMETRY_SHADER, 1, np.array( [shape], dtype='uint' ))
# set up fragment shader subroutine
surfaceKind = inx # 0: color, 1: texture
glUniformSubroutinesuiv(GL_FRAGMENT_SHADER, 1, np.array( [surfaceKind], dtype='uint' ))
materialBuffer[inx].BindToTarget()
glUniformMatrix4fv( modelMatLocation, 1, GL_FALSE, modelMat[inx] )
glDrawArrays( GL_POINTS, 0, 1 )
glutSwapBuffers()
def Fract(val): return val - math.trunc(val)
def CalcAng(currentTime, intervall): return Fract( (currentTime - startTime) / intervall ) * 360.0
def CalcMove(currentTime, intervall, range):
pos = Fract( (currentTime - startTime) / intervall ) * 2.0
pos = pos if pos < 1.0 else (2.0-pos)
return range[0] + (range[1] - range[0]) * pos
# read shader program and compile shader
def CompileShader( sourceFileName, shaderStage ):
with open( sourceFileName, 'r' ) as sourceFile:
sourceCode = sourceFile.read()
nameMap = { GL_VERTEX_SHADER: 'vertex', GL_GEOMETRY_SHADER: 'geometry', GL_FRAGMENT_SHADER: 'fragment' }
print( '\n%s shader code:' % nameMap.get(shaderStage, '') )
print( sourceCode )
shaderObj = glCreateShader( shaderStage )
glShaderSource( shaderObj, sourceCode )
glCompileShader( shaderObj )
result = glGetShaderiv( shaderObj, GL_COMPILE_STATUS )
if not (result):
print( glGetShaderInfoLog( shaderObj ) )
sys.exit()
return shaderObj
# linke shader objects to shader program
def LinkProgram( shaderObjs ):
shaderProgram = glCreateProgram()
for shObj in shaderObjs:
glAttachShader( shaderProgram, shObj )
glLinkProgram( shaderProgram )
result = glGetProgramiv( shaderProgram, GL_LINK_STATUS )
if not (result):
print( 'link error:' )
print( glGetProgramInfoLog( shaderProgram ) )
sys.exit()
return shaderProgram
# create vertex array object
def CreateVAO( dataArrays ):
noOfBuffers = len(dataArrays)
buffers = glGenBuffers(noOfBuffers)
newVAObj = glGenVertexArrays( 1 )
glBindVertexArray( newVAObj )
for inx in range(0, noOfBuffers):
vertexSize, dataArr = dataArrays[inx]
arr = np.array( dataArr, dtype='float32' )
glBindBuffer( GL_ARRAY_BUFFER, buffers[inx] )
glBufferData( GL_ARRAY_BUFFER, arr, GL_STATIC_DRAW )
glEnableVertexAttribArray( inx )
glVertexAttribPointer( inx, vertexSize, GL_FLOAT, GL_FALSE, 0, None )
return newVAObj
# representation of a uniform block
class UniformBlock:
def __init__(self, shaderProg, name):
self.shaderProg = shaderProg
self.name = name
def Link(self, bindingPoint):
self.bindingPoint = bindingPoint
self.noOfUniforms = glGetProgramiv(self.shaderProg, GL_ACTIVE_UNIFORMS)
self.maxUniformNameLen = glGetProgramiv(self.shaderProg, GL_ACTIVE_UNIFORM_MAX_LENGTH)
self.index = glGetUniformBlockIndex(self.shaderProg, self.name)
intData = np.zeros(1, dtype=int)
glGetActiveUniformBlockiv(self.shaderProg, self.index, GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS, intData)
self.count = intData[0]
self.indices = np.zeros(self.count, dtype=int)
glGetActiveUniformBlockiv(self.shaderProg, self.index, GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES, self.indices)
self.offsets = np.zeros(self.count, dtype=int)
glGetActiveUniformsiv(self.shaderProg, self.count, self.indices, GL_UNIFORM_OFFSET, self.offsets)
strLengthData = np.zeros(1, dtype=int)
arraysizeData = np.zeros(1, dtype=int)
typeData = np.zeros(1, dtype='uint32')
nameData = np.chararray(self.maxUniformNameLen+1)
self.namemap = {}
self.dataSize = 0
for inx in range(0, len(self.indices)):
glGetActiveUniform( self.shaderProg, self.indices[inx], self.maxUniformNameLen, strLengthData, arraysizeData, typeData, nameData.data )
name = nameData.tostring()[:strLengthData[0]]
self.namemap[name] = inx
self.dataSize = max(self.dataSize, self.offsets[inx] + arraysizeData * 16)
glUniformBlockBinding(self.shaderProg, self.index, self.bindingPoint)
print('\nuniform block %s size:%4d' % (self.name, self.dataSize))
for uName in self.namemap:
print( ' %-40s index:%2d offset:%4d' % (uName, self.indices[self.namemap[uName]], self.offsets[self.namemap [uName]]) )
# representation of a uniform block buffer
class UniformBlockBuffer:
def __init__(self, ub):
self.namemap = ub.namemap
self.offsets = ub.offsets
self.bindingPoint = ub.bindingPoint
self.object = glGenBuffers(1)
self.dataSize = ub.dataSize
glBindBuffer(GL_UNIFORM_BUFFER, self.object)
dataArray = np.zeros(self.dataSize//4, dtype='float32')
glBufferData(GL_UNIFORM_BUFFER, self.dataSize, dataArray, GL_DYNAMIC_DRAW)
def BindToTarget(self):
glBindBuffer(GL_UNIFORM_BUFFER, self.object)
glBindBufferBase(GL_UNIFORM_BUFFER, self.bindingPoint, self.object)
def BindDataFloat(self, name, dataArr):
glBindBuffer(GL_UNIFORM_BUFFER, self.object)
dataArray = np.array(dataArr, dtype='float32')
glBufferSubData(GL_UNIFORM_BUFFER, self.offsets[self.namemap[name]], len(dataArr)*4, dataArray)
def Translate(matA, trans):
matB = np.copy(matA)
for i in range(0, 4): matB[3,i] = matA[0,i] * trans[0] + matA[1,i] * trans[1] + matA[2,i] * trans[2] + matA[3,i]
return matB
def Scale(matA, s):
matB = np.copy(matA)
for i0 in range(0, 3):
for i1 in range(0, 4): matB[i0,i1] = matA[i0,i1] * s[i0]
return matB
def RotateHlp(matA, angDeg, a0, a1):
matB = np.copy(matA)
ang = math.radians(angDeg)
sinAng, cosAng = math.sin(ang), math.cos(ang)
for i in range(0, 4):
matB[a0,i] = matA[a0,i] * cosAng + matA[a1,i] * sinAng
matB[a1,i] = matA[a0,i] * -sinAng + matA[a1,i] * cosAng
return matB
def RotateX(matA, angDeg): return RotateHlp(matA, angDeg, 1, 2)
def RotateY(matA, angDeg): return RotateHlp(matA, angDeg, 2, 0)
def RotateZ(matA, angDeg): return RotateHlp(matA, angDeg, 0, 1)
def RotateView(matA, angDeg): return RotateZ(RotateY(RotateX(matA, angDeg[0]), angDeg[1]), angDeg[2])
def Multiply(matA, matB):
matC = np.copy(matA)
for i0 in range(0, 4):
for i1 in range(0, 4):
matC[i0,i1] = matB[i0,0] * matA[0,i1] + matB[i0,1] * matA[1,i1] + matB[i0,2] * matA[2,i1] + matB[i0,3] * matA[3,i1]
return matC
def ToMat33(mat44):
mat33 = np.matrix(np.identity(3), copy=False, dtype='float32')
for i0 in range(0, 3):
for i1 in range(0, 3): mat33[i0, i1] = mat44[i0, i1]
return mat33
def TransformVec4(vecA,mat44):
vecB = np.zeros(4, dtype='float32')
for i0 in range(0, 4):
vecB[i0] = vecA[0] * mat44[0,i0] + vecA[1] * mat44[1,i0] + vecA[2] * mat44[2,i0] + vecA[3] * mat44[3,i0]
return vecB
def Perspective(fov, aspectRatio, near, far):
fn, f_n = far + near, far - near
r, t = aspectRatio, 1.0 / math.tan( math.radians(fov) / 2.0 )
return np.matrix( [ [t/r,0,0,0], [0,t,0,0], [0,0,-fn/f_n,-2.0*far*near/f_n], [0,0,-1,0] ] )
def AddToBuffer( buffer, data, count=1 ):
for inx_c in range(0, count):
for inx_s in range(0, len(data)): buffer.append( data[inx_s] )
# initialize glut
glutInit()
# create window
wndW, wndH = 800, 600
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH)
glutInitWindowPosition(0, 0)
glutInitWindowSize(wndW, wndH)
wndID = glutCreateWindow(b'OGL window')
glutDisplayFunc(OnDraw)
glutIdleFunc(OnDraw)
# define location vertex array opject
pointVAObj = CreateVAO( [ (3, [0.0, 0.0, 0.0] ), (3, [0.0, 0.0, 1.0]), (3, [1.0, 0.0, 0.0]) ] )
# create texture
texCX, texCY = 128, 128
texPlan = np.zeros( texCX * texCY * 4, dtype=np.uint8 )
for inx_x in range(0, texCX):
for inx_y in range(0, texCY):
val_x = math.sin( math.pi * 6.0 * inx_x / texCX )
val_y = math.sin( math.pi * 6.0 * inx_y / texCY )
inx_tex = inx_y * texCX * 4 + inx_x * 4
texPlan[inx_tex + 0] = int( 128 + 127 * val_x )
texPlan[inx_tex + 1] = 63
texPlan[inx_tex + 2] = int( 128 + 127 * val_y )
texPlan[inx_tex + 3] = 255
glActiveTexture( GL_TEXTURE0 )
texObj = glGenTextures( 1 )
glBindTexture( GL_TEXTURE_2D, texObj )
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, texCX, texCY, 0, GL_RGBA, GL_UNSIGNED_BYTE, texPlan)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT)
# load, compile and link shader
shaderProgram = LinkProgram( [
CompileShader( 'python/ogl4subr/subr.vert', GL_VERTEX_SHADER ),
CompileShader( 'python/ogl4subr/subr.geo', GL_GEOMETRY_SHADER ),
CompileShader( 'python/ogl4subr/subr.frag', GL_FRAGMENT_SHADER )
] )
# get unifor locations
projectionMatLocation = glGetUniformLocation(shaderProgram, "u_projectionMat44")
viewMatLocation = glGetUniformLocation(shaderProgram, "u_viewMat44")
modelMatLocation = glGetUniformLocation(shaderProgram, "u_modelMat44")
textureMatLocation = glGetUniformLocation(shaderProgram, "u_textureMat44")
textureLocation = glGetUniformLocation(shaderProgram, "u_texture")
# linke uniform blocks
ubMaterial = UniformBlock(shaderProgram, "UB_material")
ubLightSource = UniformBlock(shaderProgram, "UB_lightSource")
ubMaterial.Link(1)
ubLightSource.Link(2)
# create uniform block buffers
lightSourceBuffer = UniformBlockBuffer(ubLightSource)
lightSourceBuffer.BindDataFloat(b'u_lightSource.ambient', [0.2, 0.2, 0.2, 1.0])
lightSourceBuffer.BindDataFloat(b'u_lightSource.diffuse', [0.2, 0.2, 0.2, 1.0])
lightSourceBuffer.BindDataFloat(b'u_lightSource.specular', [1.0, 1.0, 1.0, 1.0])
materialBuffer = [ UniformBlockBuffer(ubMaterial), UniformBlockBuffer(ubMaterial) ]
materialBuffer[0].BindDataFloat(b'u_roughness', [0.45])
materialBuffer[0].BindDataFloat(b'u_fresnel0', [0.45])
materialBuffer[0].BindDataFloat(b'u_color', [0.5, 0.7, 0.6, 1.0])
materialBuffer[0].BindDataFloat(b'u_specularTint',[1.0, 0.5, 0.5, 0.8])
materialBuffer[1].BindDataFloat(b'u_roughness', [0.4])
materialBuffer[1].BindDataFloat(b'u_fresnel0', [0.4])
materialBuffer[1].BindDataFloat(b'u_color', [0.7, 0.5, 0.6, 1.0])
materialBuffer[1].BindDataFloat(b'u_specularTint',[0.5, 1.0, 0.5, 0.8])
# start main loop
startTime = time()
glutMainLoop()
A simple OGL 4.0 GLSL shader program that shows the use of a interface block and a uniform block on a Cook-Torrance microfacet light model implementation. The program is executed with a phyton script. To run the script, PyOpenGL and NumPy must be installed.
An Interface Block is a group of GLSL input, output, uniform, or storage buffer variables.
An Uniform Blockis is an Interface Block with the storage qualifier​ uniform
.
ibub.vert
#version 400
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec3 inNV;
layout (location = 2) in vec3 inCol;
out TVertexData
{
vec3 pos;
vec3 nv;
vec3 col;
} outData;
uniform mat4 u_projectionMat44;
uniform mat4 u_modelViewMat44;
uniform mat3 u_normalMat33;
void main()
{
vec4 viewPos = u_modelViewMat44 * vec4( inPos, 1.0 );
outData.pos = viewPos.xyz / viewPos.w;
outData.nv = u_normalMat33 * normalize( inNV );
outData.col = inCol;
gl_Position = u_projectionMat44 * viewPos;
}
ibub.frag
#version 400
in TVertexData
{
vec3 pos;
vec3 nv;
vec3 col;
} inData;
out vec4 fragColor;
uniform UB_material
{
float u_roughness;
float u_fresnel0;
vec4 u_specularTint;
};
struct TLightSource
{
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 dir;
};
uniform UB_lightSource
{
TLightSource u_lightSource;
};
vec3 CookTorrance( vec3 esPt, vec3 esPtNV, vec3 col, vec4 specularTint, float roughness, float fresnel0 )
{
vec3 esVLight = normalize( -u_lightSource.dir.xyz );
vec3 esVEye = normalize( -esPt );
vec3 halfVector = normalize( esVEye + esVLight );
vec3 reflVector = normalize( reflect( -esVLight, esPtNV ) );
float VdotR = dot( esVEye, reflVector );
float HdotL = dot( halfVector, esVLight );
float NdotL = dot( esPtNV, esVLight );
float NdotV = dot( esPtNV, esVEye );
float NdotH = dot( esPtNV, halfVector );
float NdotH2 = NdotH * NdotH;
float NdotL_clamped = max( NdotL, 0.0 );
float NdotV_clamped = max( NdotV, 0.0 );
float m2 = roughness * roughness;
// Lambertian diffuse
float k_diffuse = NdotL_clamped;
// Cook-Torrance fresnel
float theta = HdotL;
float n = (1.0 + sqrt(fresnel0)) / (1.0 - sqrt(fresnel0));
float g = sqrt( n*n + theta * theta + 1.0 );
float gc = g + theta;
float g_c = g - theta;
float q = (gc * theta - 1.0) / (g_c * theta + 1.0);
float fresnel = 0.5 * (g_c * g_c) / (gc * gc) * (1.0 + q * q);
// Gaussian distribution
float psi = acos( VdotR );
float distribution = max( 0.0, HdotL * exp( - psi * psi / m2 ) );
// Torrance-Sparrow geometric term
float geometric_att = min( 1.0, min( 2.0 * NdotH * NdotV_clamped / HdotL, 2.0 * NdotH * NdotL_clamped / HdotL ) );
// Microfacet bidirectional reflectance distribution function
float brdf_spec = fresnel * distribution * geometric_att / ( 4.0 * NdotL_clamped * NdotV_clamped );
float k_specular = brdf_spec;
vec3 lightColor = col.rgb * u_lightSource.ambient.rgb
+ max( 0.0, k_diffuse ) * col.rgb * u_lightSource.diffuse.rgb +
+ max( 0.0, k_specular ) * mix( col.rgb, specularTint.rgb, specularTint.a ) * u_lightSource.specular.rgb;
return lightColor;
}
void main()
{
vec3 lightCol = CookTorrance( inData.pos, inData.nv, inData.col, u_specularTint, u_roughness, u_fresnel0 );
fragColor = vec4( lightCol, 1.0 );
}
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import numpy as np
from time import time
import math
import sys
sin120 = 0.8660254
rotateCamera = False
# draw event
def OnDraw():
dist = 3.0
currentTime = time()
comeraRotAng = CalcAng( currentTime, 10.0 )
# set up projection matrix
prjMat = Perspective(90.0, wndW/wndH, 0.5, 100.0)
# set up view matrix
viewMat = Translate( np.matrix(np.identity(4), copy=False, dtype='float32'), np.array( [0.0, 0.0, -12.0] ) )
viewMat = RotateView( viewMat, [30.0, comeraRotAng if rotateCamera else 0.0, 0.0] )
# set up light source
lightSourceBuffer.BindDataFloat(b'u_lightSource.dir', TransformVec4([-3.0, -2.0, -1.0, 0.0], viewMat) )
# set up tetrahedron model matrix
tetModelMat = np.matrix(np.identity(4), copy=False, dtype='float32')
if not rotateCamera: tetModelMat = RotateY( tetModelMat, comeraRotAng )
tetModelMat = RotateX( tetModelMat, -90.0 )
tetModelMat = Scale( tetModelMat, np.repeat( 2.4, 3 ) )
tetModelMat = Translate( tetModelMat, np.array( [0.0, dist, 0.0] ) )
tetModelMat = RotateY( tetModelMat, CalcAng( currentTime, 20.0 ) )
tetModelMat = RotateX( tetModelMat, CalcAng( currentTime, 9.0 ) )
# set up icosahedron model matrix
icoModelMat = np.matrix(np.identity(4), copy=False, dtype='float32')
if not rotateCamera: icoModelMat = RotateY( icoModelMat, comeraRotAng )
icoModelMat = RotateX( icoModelMat, -90.0 )
icoModelMat = Scale( icoModelMat, np.repeat( 2.0, 3 ) )
icoModelMat = Translate( icoModelMat, np.array( [dist * -sin120, dist * -0.5, 0.0] ) )
icoModelMat = RotateY( icoModelMat, CalcAng( currentTime, 20.0 ) )
icoModelMat = RotateX( icoModelMat, CalcAng( currentTime, 11.0 ) )
# set up cube model matrix
cubeModelMat = np.matrix(np.identity(4), copy=False, dtype='float32')
if not rotateCamera: cubeModelMat = RotateY( cubeModelMat, comeraRotAng )
cubeModelMat = RotateX( cubeModelMat, -90.0 )
cubeModelMat = Scale( cubeModelMat, np.repeat( 1.6, 3 ) )
cubeModelMat = Translate( cubeModelMat, np.array( [dist * sin120, dist * -0.5, 0.0] ) )
cubeModelMat = RotateY( cubeModelMat, CalcAng( currentTime, 20.0 ) )
cubeModelMat = RotateX( cubeModelMat, CalcAng( currentTime, 13.0 ) )
# set up attributes and shader program
glEnable( GL_DEPTH_TEST )
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT )
glUseProgram( shaderProgram )
glUniformMatrix4fv( projectionMatLocation, 1, GL_FALSE, prjMat )
lightSourceBuffer.BindToTarget()
# draw tetrahedron
tetMaterialBuffer.BindToTarget()
modelViewMat = Multiply(viewMat, tetModelMat)
glUniformMatrix4fv( modelViewMatLocation, 1, GL_FALSE, modelViewMat )
glUniformMatrix3fv( normalMatLocation, 1, GL_FALSE, ToMat33(modelViewMat) )
glBindVertexArray( tetVAObj )
glDrawArrays( GL_TRIANGLES, 0, len(tetPosData) )
# draw icosahedron
icoMaterialBuffer.BindToTarget()
modelViewMat = Multiply(viewMat, icoModelMat)
glUniformMatrix4fv( modelViewMatLocation, 1, GL_FALSE, modelViewMat )
glUniformMatrix3fv( normalMatLocation, 1, GL_FALSE, ToMat33(modelViewMat) )
glBindVertexArray( icoVAObj )
glDrawArrays( GL_TRIANGLES, 0, len(icoPosData) )
# draw cube
cubeMaterialBuffer.BindToTarget()
modelViewMat = Multiply(viewMat, cubeModelMat)
glUniformMatrix4fv( modelViewMatLocation, 1, GL_FALSE, modelViewMat )
glUniformMatrix3fv( normalMatLocation, 1, GL_FALSE, ToMat33(modelViewMat) )
glBindVertexArray( cubeVAObj )
glDrawElements(GL_TRIANGLES, len(cubeIndices), GL_UNSIGNED_INT, cubeIndices)
glutSwapBuffers()
def Fract(val): return val - math.trunc(val)
def CalcAng(currentTime, intervall): return Fract( (currentTime - startTime) / intervall ) * 360.0
def CalcMove(currentTime, intervall, range):
pos = Fract( (currentTime - startTime) / intervall ) * 2.0
pos = pos if pos < 1.0 else (2.0-pos)
return range[0] + (range[1] - range[0]) * pos
# read shader program and compile shader
def CompileShader( sourceFileName, shaderStage ):
with open( sourceFileName, 'r' ) as sourceFile:
sourceCode = sourceFile.read()
nameMap = { GL_VERTEX_SHADER: 'vertex', GL_FRAGMENT_SHADER: 'fragment' }
print( '\n%s shader code:' % nameMap.get(shaderStage, '') )
print( sourceCode )
shaderObj = glCreateShader( shaderStage )
glShaderSource( shaderObj, sourceCode )
glCompileShader( shaderObj )
result = glGetShaderiv( shaderObj, GL_COMPILE_STATUS )
if not (result):
print( glGetShaderInfoLog( shaderObj ) )
sys.exit()
return shaderObj
# linke shader objects to shader program
def LinkProgram( shaderObjs ):
shaderProgram = glCreateProgram()
for shObj in shaderObjs:
glAttachShader( shaderProgram, shObj )
glLinkProgram( shaderProgram )
result = glGetProgramiv( shaderProgram, GL_LINK_STATUS )
if not (result):
print( 'link error:' )
print( glGetProgramInfoLog( shaderProgram ) )
sys.exit()
return shaderProgram
# create vertex array object
def CreateVAO( dataArrays ):
noOfBuffers = len(dataArrays)
buffers = glGenBuffers(noOfBuffers)
newVAObj = glGenVertexArrays( 1 )
glBindVertexArray( newVAObj )
for inx in range(0, noOfBuffers):
vertexSize, dataArr = dataArrays[inx]
arr = np.array( dataArr, dtype='float32' )
glBindBuffer( GL_ARRAY_BUFFER, buffers[inx] )
glBufferData( GL_ARRAY_BUFFER, arr, GL_STATIC_DRAW )
glEnableVertexAttribArray( inx )
glVertexAttribPointer( inx, vertexSize, GL_FLOAT, GL_FALSE, 0, None )
return newVAObj
# representation of a uniform block
class UniformBlock:
def __init__(self, shaderProg, name):
self.shaderProg = shaderProg
self.name = name
def Link(self, bindingPoint):
self.bindingPoint = bindingPoint
self.noOfUniforms = glGetProgramiv(self.shaderProg, GL_ACTIVE_UNIFORMS)
self.maxUniformNameLen = glGetProgramiv(self.shaderProg, GL_ACTIVE_UNIFORM_MAX_LENGTH)
self.index = glGetUniformBlockIndex(self.shaderProg, self.name)
intData = np.zeros(1, dtype=int)
glGetActiveUniformBlockiv(self.shaderProg, self.index, GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS, intData)
self.count = intData[0]
self.indices = np.zeros(self.count, dtype=int)
glGetActiveUniformBlockiv(self.shaderProg, self.index, GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES, self.indices)
self.offsets = np.zeros(self.count, dtype=int)
glGetActiveUniformsiv(self.shaderProg, self.count, self.indices, GL_UNIFORM_OFFSET, self.offsets)
self.size = 0
strLengthData = np.zeros(1, dtype=int)
arraysizeData = np.zeros(1, dtype=int)
typeData = np.zeros(1, dtype='uint32')
nameData = np.chararray(self.maxUniformNameLen+1)
self.namemap = {}
self.dataSize = 0
for inx in range(0, len(self.indices)):
glGetActiveUniform( self.shaderProg, self.indices[inx], self.maxUniformNameLen, strLengthData, arraysizeData, typeData, nameData.data )
name = nameData.tostring()[:strLengthData[0]]
self.namemap[name] = inx
self.dataSize = max(self.dataSize, self.offsets[inx] + arraysizeData * 16)
glUniformBlockBinding(self.shaderProg, self.index, self.bindingPoint)
print('\nuniform block %s size:%4d' % (self.name, self.dataSize))
for uName in self.namemap:
print( ' %-40s index:%2d offset:%4d' % (uName, self.indices[self.namemap[uName]], self.offsets [self.namemap[uName]]) )
# representation of a uniform block buffer
class UniformBlockBuffer:
def __init__(self, ub):
self.namemap = ub.namemap
self.offsets = ub.offsets
self.bindingPoint = ub.bindingPoint
self.object = glGenBuffers(1)
self.dataSize = ub.dataSize
glBindBuffer(GL_UNIFORM_BUFFER, self.object)
dataArray = np.zeros(self.dataSize//4, dtype='float32')
glBufferData(GL_UNIFORM_BUFFER, self.dataSize, dataArray, GL_DYNAMIC_DRAW)
def BindToTarget(self):
glBindBuffer(GL_UNIFORM_BUFFER, self.object)
glBindBufferBase(GL_UNIFORM_BUFFER, self.bindingPoint, self.object)
def BindDataFloat(self, name, dataArr):
glBindBuffer(GL_UNIFORM_BUFFER, self.object)
dataArray = np.array(dataArr, dtype='float32')
glBufferSubData(GL_UNIFORM_BUFFER, self.offsets[self.namemap[name]], len(dataArr)*4, dataArray)
def Translate(matA, trans):
matB = np.copy(matA)
for i in range(0, 4): matB[3,i] = matA[0,i] * trans[0] + matA[1,i] * trans[1] + matA[2,i] * trans[2] + matA[3,i]
return matB
def Scale(matA, s):
matB = np.copy(matA)
for i0 in range(0, 3):
for i1 in range(0, 4): matB[i0,i1] = matA[i0,i1] * s[i0]
return matB
def RotateHlp(matA, angDeg, a0, a1):
matB = np.copy(matA)
ang = math.radians(angDeg)
sinAng, cosAng = math.sin(ang), math.cos(ang)
for i in range(0, 4):
matB[a0,i] = matA[a0,i] * cosAng + matA[a1,i] * sinAng
matB[a1,i] = matA[a0,i] * -sinAng + matA[a1,i] * cosAng
return matB
def RotateX(matA, angDeg): return RotateHlp(matA, angDeg, 1, 2)
def RotateY(matA, angDeg): return RotateHlp(matA, angDeg, 2, 0)
def RotateZ(matA, angDeg): return RotateHlp(matA, angDeg, 0, 1)
def RotateView(matA, angDeg): return RotateZ(RotateY(RotateX(matA, angDeg[0]), angDeg[1]), angDeg[2])
def Multiply(matA, matB):
matC = np.copy(matA)
for i0 in range(0, 4):
for i1 in range(0, 4):
matC[i0,i1] = matB[i0,0] * matA[0,i1] + matB[i0,1] * matA[1,i1] + matB[i0,2] * matA[2,i1] + matB[i0,3] * matA [3,i1]
return matC
def ToMat33(mat44):
mat33 = np.matrix(np.identity(3), copy=False, dtype='float32')
for i0 in range(0, 3):
for i1 in range(0, 3): mat33[i0, i1] = mat44[i0, i1]
return mat33
def TransformVec4(vecA,mat44):
vecB = np.zeros(4, dtype='float32')
for i0 in range(0, 4):
vecB[i0] = vecA[0] * mat44[0,i0] + vecA[1] * mat44[1,i0] + vecA[2] * mat44[2,i0] + vecA[3] * mat44[3,i0]
return vecB
def Perspective(fov, aspectRatio, near, far):
fn, f_n = far + near, far - near
r, t = aspectRatio, 1.0 / math.tan( math.radians(fov) / 2.0 )
return np.matrix( [ [t/r,0,0,0], [0,t,0,0], [0,0,-fn/f_n,-2.0*far*near/f_n], [0,0,-1,0] ] )
def AddToBuffer( buffer, data, count=1 ):
for inx_c in range(0, count):
for inx_s in range(0, len(data)): buffer.append( data[inx_s] )
# initialize glut
glutInit()
# create window
wndW, wndH = 800, 600
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH)
glutInitWindowPosition(0, 0)
glutInitWindowSize(wndW, wndH)
wndID = glutCreateWindow(b'OGL window')
glutDisplayFunc(OnDraw)
glutIdleFunc(OnDraw)
# define tetrahedron vertex array opject
tetPts = [ (0.0, 0.0, 1.0), (0.0, -sin120, -0.5), (sin120 * sin120, 0.5 * sin120, -0.5), (-sin120 * sin120, 0.5 * sin120, -0.5) ]
tetCol = [ [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0], ]
tetInxdices = [ 0, 1, 2, 0, 2, 3, 0, 3, 1, 1, 3, 2 ]
tetPosData = []
for inx in tetInxdices: AddToBuffer( tetPosData, tetPts[inx] )
tetNVData = []
for inx_nv in range(0, len(tetInxdices) // 3):
nv = [0.0, 0.0, 0.0]
for inx_p in range(0, 3):
for inx_s in range(0, 3): nv[inx_s] += tetPts[ tetInxdices[inx_nv*3 + inx_p] ][inx_s]
AddToBuffer( tetNVData, nv, 3 )
tetColData = []
for inx_col in range(0, len(tetInxdices) // 3): AddToBuffer( tetColData, tetCol[inx_col % len(tetCol)], 3 )
tetVAObj = CreateVAO( [ (3, tetPosData), (3, tetNVData), (3, tetColData) ] )
# define icosahedron vertex array opject
icoPts = [
( 0.000, 0.000, 1.000), ( 0.894, 0.000, 0.447), ( 0.276, 0.851, 0.447), (-0.724, 0.526, 0.447),
(-0.724, -0.526, 0.447), ( 0.276, -0.851, 0.447), ( 0.724, 0.526, -0.447), (-0.276, 0.851, -0.447),
(-0.894, 0.000, -0.447), (-0.276, -0.851, -0.447), ( 0.724, -0.526, -0.447), ( 0.000, 0.000, -1.000) ]
icoCol = [ [1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.5, 0.0], [1.0, 0.0, 1.0] ]
icoIndices = [
2, 0, 1, 3, 0, 2, 4, 0, 3, 5, 0, 4, 1, 0, 5, 11, 7, 6, 11, 8, 7, 11, 9, 8, 11, 10, 9, 11, 6, 10,
1, 6, 2, 2, 7, 3, 3, 8, 4, 4, 9, 5, 5, 10, 1, 2, 6, 7, 3, 7, 8, 4, 8, 9, 5, 9, 10, 1, 10, 6 ]
icoPosData = []
for inx in icoIndices: AddToBuffer( icoPosData, icoPts[inx] )
icoNVData = []
for inx in icoIndices: AddToBuffer( icoNVData, icoPts[inx] )
#for inx_nv in range(0, len(icoIndices) // 3):
# nv = [0.0, 0.0, 0.0]
# for inx_p in range(0, 3):
# for inx_s in range(0, 3): nv[inx_s] += icoPts[ icoIndices[inx_nv*3 + inx_p] ][inx_s]
# AddToBuffer( icoNVData, nv, 3 )
icoColData = []
for inx_col in range(0, len(icoIndices) // 3): AddToBuffer( icoColData, icoCol[inx_col % len(icoCol)], 3 )
icoVAObj = CreateVAO( [ (3, icoPosData), (3, icoNVData), (3, icoColData) ] )
# define cube vertex array opject
cubePts = [
(-1.0, -1.0, 1.0), ( 1.0, -1.0, 1.0), ( 1.0, 1.0, 1.0), (-1.0, 1.0, 1.0),
(-1.0, -1.0, -1.0), ( 1.0, -1.0, -1.0), ( 1.0, 1.0, -1.0), (-1.0, 1.0, -1.0) ]
cubeCol = [ [1.0, 0.0, 0.0], [1.0, 0.5, 0.0], [1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0] ]
cubeHlpInx = [ 0, 1, 2, 3, 1, 5, 6, 2, 5, 4, 7, 6, 4, 0, 3, 7, 3, 2, 6, 7, 1, 0, 4, 5 ]
cubePosData = []
for inx in cubeHlpInx: AddToBuffer( cubePosData, cubePts[inx] )
cubeNVData = []
for inx_nv in range(0, len(cubeHlpInx) // 4):
nv = [0.0, 0.0, 0.0]
for inx_p in range(0, 4):
for inx_s in range(0, 3): nv[inx_s] += cubePts[ cubeHlpInx[inx_nv*4 + inx_p] ][inx_s]
AddToBuffer( cubeNVData, nv, 4 )
cubeColData = []
for inx_col in range(0, 6):
AddToBuffer( cubeColData, cubeCol[inx_col % len(cubeCol)], 4 )
cubeIndices = []
for inx in range(0, 6):
for inx_s in [0, 1, 2, 0, 2, 3]: cubeIndices.append( inx * 4 + inx_s )
cubeVAObj = CreateVAO( [ (3, cubePosData), (3, cubeNVData), (3, cubeColData) ] )
# load, compile and link shader
shaderProgram = LinkProgram( [
CompileShader( 'ibub.vert', GL_VERTEX_SHADER ),
CompileShader( 'ibub.frag', GL_FRAGMENT_SHADER )
] )
# get unifor locations
projectionMatLocation = glGetUniformLocation(shaderProgram, "u_projectionMat44")
modelViewMatLocation = glGetUniformLocation(shaderProgram, "u_modelViewMat44")
normalMatLocation = glGetUniformLocation(shaderProgram, "u_normalMat33")
# linke uniform blocks
ubMaterial = UniformBlock(shaderProgram, "UB_material")
ubLightSource = UniformBlock(shaderProgram, "UB_lightSource")
ubMaterial.Link(1)
ubLightSource.Link(2)
# create uniform block buffers
lightSourceBuffer = UniformBlockBuffer(ubLightSource)
lightSourceBuffer.BindDataFloat(b'u_lightSource.ambient', [0.1, 0.1, 0.1, 1.0])
lightSourceBuffer.BindDataFloat(b'u_lightSource.diffuse', [0.4, 0.4, 0.4, 1.0])
lightSourceBuffer.BindDataFloat(b'u_lightSource.specular', [1.0, 1.0, 1.0, 1.0])
tetMaterialBuffer = UniformBlockBuffer(ubMaterial)
tetMaterialBuffer.BindDataFloat(b'u_roughness', [0.3])
tetMaterialBuffer.BindDataFloat(b'u_fresnel0', [0.5])
tetMaterialBuffer.BindDataFloat(b'u_specularTint',[1.0, 1.0, 1.0, 0.7])
icoMaterialBuffer = UniformBlockBuffer(ubMaterial)
icoMaterialBuffer.BindDataFloat(b'u_roughness', [0.1])
icoMaterialBuffer.BindDataFloat(b'u_fresnel0', [0.2])
icoMaterialBuffer.BindDataFloat(b'u_specularTint',[1.0, 1.0, 1.0, 0.7])
cubeMaterialBuffer = UniformBlockBuffer(ubMaterial)
cubeMaterialBuffer.BindDataFloat(b'u_roughness', [0.5])
cubeMaterialBuffer.BindDataFloat(b'u_fresnel0', [0.3])
cubeMaterialBuffer.BindDataFloat(b'u_specularTint',[1.0, 1.0, 1.0, 0.7])
# start main loop
startTime = time()
glutMainLoop()
A simple OGL 4.0 GLSL shader program that shows the use of a model, view, and projection matrix The program is executed with a phyton script. To run the script, PyOpenGL and NumPy must be installed.
Projection matrix: The projection matrix describes the mapping of a pinhole camera from 3D points in the world to 2D points of the viewport. In this example we use a projection matrix with a field of view of 90 degrees.
View matrix: The view matrix defines the eye position and the viewing direction on the scene. In this example we are moving circular around the scene keeping a viewing direction to the center of the scene.
Model matrix: The model matrix defines the location and the relative size of an object in the scene. In this example the model matrices move the objects up and down.
mvp.vet
#version 400
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec3 inCol;
out vec3 vertCol;
uniform mat4 projectionMat44;
uniform mat4 viewMat44;
uniform mat4 modelMat44;
void main()
{
vertCol = inCol;
vec4 modolPos = modelMat44 * vec4( inPos, 1.0 );
vec4 viewPos = viewMat44 * modolPos;
gl_Position = projectionMat44 * viewPos;
}
mvp.frag
#version 400
in vec3 vertCol;
out vec4 fragColor;
void main()
{
fragColor = vec4( vertCol, 1.0 );
}
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import numpy as np
from time import time
import math
import sys
# draw event
def OnDraw():
currentTime = time()
# set up projection matrix
prjMat = perspective( 90.0, wndW/wndH, 0.5, 100.0)
# set up view matrix
viewMat = Translate( np.matrix(np.identity(4), copy=False, dtype='float32'), np.array( [0.0, 0.0, -8.0] ) )
viewMat = RotateView( viewMat, [10.0, CalcAng( currentTime, 10.0 ), 0.0] )
# set up tetrahedron model matrix
tetModelMat = np.matrix(np.identity(4), copy=False, dtype='float32')
tetModelMat = RotateX( tetModelMat, -90.0 )
tetModelMat = Scale( tetModelMat, np.repeat( 2.0, 3 ) )
tetModelMat = Translate( tetModelMat, np.array( [-2.0, 0.0, CalcMove(currentTime, 6.0, [-1.0, 1.0])] ) )
# set up icosahedron model matrix
icoModelMat = np.matrix(np.identity(4), copy=False, dtype='float32')
icoModelMat = RotateX( icoModelMat, -90.0 )
icoModelMat = Scale( icoModelMat, np.repeat( 2.0, 3 ) )
icoModelMat = Translate( icoModelMat, np.array( [2.0, 0.0, CalcMove(currentTime, 6.0, [1.0, -1.0])] ) )
# set up attributes and shader program
glEnable( GL_DEPTH_TEST )
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT )
glUseProgram( shaderProgram )
glUniformMatrix4fv( projectionMatLocation, 1, GL_FALSE, prjMat )
glUniformMatrix4fv( viewMatLocation, 1, GL_FALSE, viewMat )
# draw tetrahedron
glUniformMatrix4fv( modelMatLocation, 1, GL_FALSE, tetModelMat )
glBindVertexArray( tetVAObj )
glDrawElements(GL_TRIANGLES, len(tetIndices), GL_UNSIGNED_INT, tetIndices)
# draw tetrahedron
glUniformMatrix4fv( modelMatLocation, 1, GL_FALSE, icoModelMat )
glBindVertexArray( icoVAObj )
glDrawArrays( GL_TRIANGLES, 0, len(icoPosData) )
glutSwapBuffers()
def Fract(val): return val - math.trunc(val)
def CalcAng(currentTime, intervall): return Fract( (currentTime - startTime) / intervall ) * 360.0
def CalcMove(currentTime, intervall, range):
pos = Fract( (currentTime - startTime) / intervall ) * 2.0
pos = pos if pos < 1.0 else (2.0-pos)
return range[0] + (range[1] - range[0]) * pos
# read shader program and compile shader
def CompileShader( sourceFileName, shaderStage ):
with open( sourceFileName, 'r' ) as sourceFile:
sourceCode = sourceFile.read()
nameMap = { GL_VERTEX_SHADER: 'vertex', GL_FRAGMENT_SHADER: 'fragment' }
print( '\n%s shader code:' % nameMap.get(shaderStage, '') )
print( sourceCode )
shaderObj = glCreateShader( shaderStage )
glShaderSource( shaderObj, sourceCode )
glCompileShader( shaderObj )
result = glGetShaderiv( shaderObj, GL_COMPILE_STATUS )
if not (result):
print( glGetShaderInfoLog( shaderObj ) )
sys.exit()
return shaderObj
# linke shader objects to shader program
def LinkProgram( shaderObjs ):
shaderProgram = glCreateProgram()
for shObj in shaderObjs:
glAttachShader( shaderProgram, shObj )
glLinkProgram( shaderProgram )
result = glGetProgramiv( shaderProgram, GL_LINK_STATUS )
if not (result):
print( 'link error:' )
print( glGetProgramInfoLog( shaderProgram ) )
sys.exit()
return shaderProgram
# create vertex array opject
def CreateVAO( dataArrays ):
noOfBuffers = len(dataArrays)
buffers = glGenBuffers(noOfBuffers)
newVAObj = glGenVertexArrays( 1 )
glBindVertexArray( newVAObj )
for inx in range(0, noOfBuffers):
vertexSize, dataArr = dataArrays[inx]
arr = np.array( dataArr, dtype='float32' )
glBindBuffer( GL_ARRAY_BUFFER, buffers[inx] )
glBufferData( GL_ARRAY_BUFFER, arr, GL_STATIC_DRAW )
glEnableVertexAttribArray( inx )
glVertexAttribPointer( inx, vertexSize, GL_FLOAT, GL_FALSE, 0, None )
return newVAObj
def Translate(matA, trans):
matB = np.copy(matA)
for i in range(0, 4): matB[3,i] = matA[0,i] * trans[0] + matA[1,i] * trans[1] + matA[2,i] * trans[2] + matA[3,i]
return matB
def Scale(matA, s):
matB = np.copy(matA)
for i0 in range(0, 3):
for i1 in range(0, 4): matB[i0,i1] = matA[i0,i1] * s[i0]
return matB
def RotateHlp(matA, angDeg, a0, a1):
matB = np.copy(matA)
ang = math.radians(angDeg)
sinAng, cosAng = math.sin(ang), math.cos(ang)
for i in range(0, 4):
matB[a0,i] = matA[a0,i] * cosAng + matA[a1,i] * sinAng
matB[a1,i] = matA[a0,i] * -sinAng + matA[a1,i] * cosAng
return matB
def RotateX(matA, angDeg): return RotateHlp(matA, angDeg, 1, 2)
def RotateY(matA, angDeg): return RotateHlp(matA, angDeg, 2, 0)
def RotateZ(matA, angDeg): return RotateHlp(matA, angDeg, 0, 1)
def RotateView(matA, angDeg): return RotateZ(RotateY(RotateX(matA, angDeg[0]), angDeg[1]), angDeg[2])
def perspective(fov, aspectRatio, near, far):
fn, f_n = far + near, far - near
r, t = aspectRatio, 1.0 / math.tan( math.radians(fov) / 2.0 )
return np.matrix( [ [t/r,0,0,0], [0,t,0,0], [0,0,-fn/f_n,-2.0*far*near/f_n], [0,0,-1,0] ] )
# initialize glut
glutInit()
# create window
wndW, wndH = 800, 600
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH)
glutInitWindowPosition(0, 0)
glutInitWindowSize(wndW, wndH)
wndID = glutCreateWindow(b'OGL window')
glutDisplayFunc(OnDraw)
glutIdleFunc(OnDraw)
# define tetrahedron vertex array opject
sin120 = 0.8660254
tetPposData = [ 0.0, 0.0, 1.0, 0.0, -sin120, -0.5, sin120 * sin120, 0.5 * sin120, -0.5, -sin120 * sin120, 0.5 * sin120, -0.5 ]
tetColData = [ 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, ]
tetIndices = [ 0, 1, 2, 0, 2, 3, 0, 3, 1, 1, 3, 2 ]
tetVAObj = CreateVAO( [ (3, tetPposData), (3, tetColData) ] )
tetInxArr = np.array( tetIndices, dtype='uint' )
# define icosahedron vertex array opject
icoPts = [
[ 0.000, 0.000, 1.000], [ 0.894, 0.000, 0.447], [ 0.276, 0.851, 0.447], [-0.724, 0.526, 0.447],
[-0.724, -0.526, 0.447], [ 0.276, -0.851, 0.447], [ 0.724, 0.526, -0.447], [-0.276, 0.851, -0.447],
[-0.894, 0.000, -0.447], [-0.276, -0.851, -0.447], [ 0.724, -0.526, -0.447], [ 0.000, 0.000, -1.000] ]
icoCol = [ [1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.5, 0.0], [1.0, 0.0, 1.0] ]
icoIndices = [
2, 0, 1, 3, 0, 2, 4, 0, 3, 5, 0, 4, 1, 0, 5, 11, 7, 6, 11, 8, 7, 11, 9, 8, 11, 10, 9, 11, 6, 10,
1, 6, 2, 2, 7, 3, 3, 8, 4, 4, 9, 5, 5, 10, 1, 2, 6, 7, 3, 7, 8, 4, 8, 9, 5, 9, 10, 1, 10, 6 ]
icoPosData = []
for inx in icoIndices:
for inx_s in range(0, 3):
icoPosData.append( icoPts[inx][inx_s] )
icoColData = []
for inx in range(0, len(icoPosData) // 9):
inx_col = inx % len(icoCol)
for inx_p in range(0, 3):
for inx_s in range(0, 3):
icoColData.append( icoCol[inx_col][inx_s] )
icoVAObj = CreateVAO( [ (3, icoPosData), (3, icoColData) ] )
# load, compile and link shader
shaderProgram = LinkProgram( [
CompileShader( 'mvp.vert', GL_VERTEX_SHADER ),
CompileShader( 'mvp.frag', GL_FRAGMENT_SHADER )
] )
projectionMatLocation = glGetUniformLocation(shaderProgram, "projectionMat44")
viewMatLocation = glGetUniformLocation(shaderProgram, "viewMat44")
modelMatLocation = glGetUniformLocation(shaderProgram, "modelMat44")
# start main loop
startTime = time()
glutMainLoop()