Training a custom classifier requires a corpus of images organized into groups. In this example, I have a bunch of images of apples in one ZIP file, a bunch of images of bananas in another ZIP file, and a third group of images of things that are not fruits for a negative set. Once a custom classifier is created, it will be in state training
and you'll have to use the classifier ID to check if it is ready (using the 'Get information about a specific custom classifier' example).
'use strict';
let watson = require('watson-developer-cloud');
let fs = require('fs');
var visualRecognition = watson.visual_recognition({
version: 'v3',
api_key: process.env.API_KEY,
version_date:'2016-05-19'
});
let custom_classifier = {
apple_positive_examples: fs.createReadStream('./apples.zip'),
banana_positive_examples: fs.createReadStream('./bananas.zip'),
negative_examples: fs.createReadStream('./non-fruits.zip'),
name: 'The Name of My Classifier'
}
visualRecognition.createClassifier(custom_classifier, function(error, results) {
console.log(JSON.stringify(results,null,2));
});