In order for a program to react to a certain signal, other than using default action, custom signal handler can be installed using sigaction
. sigaction
receives three arguments - signal to act on, pointer to sigaction_t
structure which, if not NULL
, is describing new behaviour and pointer to sigaction_t
which, if not NULL
will be filled with the old behaviour (so one can restore it). Raising signals in same process can be done with raise
method. If more control is needed (to send the signal to some other process, kill
or pthread_kill
can be used, which accept the destination process id or thread id).
#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// Signals are numbered from 1, signal 0 doesn't exist
volatile sig_atomic_t last_received_signal = 0;
// Signal handler, will set the global variable
// to indicate what is the last signal received.
// There should be as less work as possible inside
// signal handler routine, and one must take care only
// to call reentrant functions (in case of signal arriving
// while program is already executing same function)
void signal_catcher(int signo, siginfo_t *info, void *context)
{
last_received_signal = info->si_signo;
}
int main (int argc, char** argv)
{
// Setup a signal handler for SIGUSR1 and SIGUSR2
struct sigaction act;
memset(&act, 0, sizeof act);
// sigact structure holding old configuration
// (will be filled by sigaction):
struct sigaction old_1;
memset(&old_1, 0, sizeof old_1);
struct sigaction old_2;
memset(&old_2, 0, sizeof old_2);
act.sa_sigaction = signal_catcher;
// When passing sa_sigaction, SA_SIGINFO flag
// must be specified. Otherwise, function pointed
// by act.sa_handler will be invoked
act.sa_flags = SA_SIGINFO;
if (0 != sigaction(SIGUSR1, &act, &old_1))
{
perror("sigaction () failed installing SIGUSR1 handler");
return EXIT_FAILURE;
}
if (0 != sigaction(SIGUSR2, &act, &old_2))
{
perror("sigaction() failed installing SIGUSR2 handler");
return EXIT_FAILURE;
}
// Main body of "work" during which two signals
// will be raised, after 5 and 10 seconds, and which
// will print last received signal
for (int i = 1; i <= 15; i++)
{
if (i == 5)
{
if (0 != raise(SIGUSR1))
{
perror("Can't raise SIGUSR1");
return EXIT_FAILURE;
}
}
if (i == 10)
{
if (0 != raise(SIGUSR2))
{
perror("Can't raise SIGUSR2");
return EXIT_FAILURE;
}
}
printf("Tick #%d, last caught signal: %d\n",
i, last_received_signal);
sleep(1);
}
// Restore old signal handlers
if (0 != sigaction(SIGUSR1, &old_1, NULL))
{
perror("sigaction() failed restoring SIGUSR1 handler");
return EXIT_FAILURE;
}
if (0 != sigaction(SIGUSR2, &old_2, NULL))
{
perror("sigaction() failed restoring SIGUSR2 handler");
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
This outputs:
Tick #1, last caught signal: 0
Tick #2, last caught signal: 0
Tick #3, last caught signal: 0
Tick #4, last caught signal: 0
Tick #5, last caught signal: 30
Tick #6, last caught signal: 30
Tick #7, last caught signal: 30
Tick #8, last caught signal: 30
Tick #9, last caught signal: 30
Tick #10, last caught signal: 31
Tick #11, last caught signal: 31
Tick #12, last caught signal: 31
Tick #13, last caught signal: 31
Tick #14, last caught signal: 31
Tick #15, last caught signal: 31