The following example shows how the master can receive data from multiple slaves. In this example the slave sends two short numbers. The first one is for temperature, and the second one is for moisture. Please notice that the temperature is a float (24.3). In order to use only two bytes and not four (float is four bytes), I multiple the temperature in 10, and save it as a short. So here is the master code:
#include <Wire.h>
#define BUFFER_SIZE 4
#define MAX_NUMBER_OF_SLAVES 24
#define FIRST_SLAVE_ADDRESS 1
#define READ_CYCLE_DELAY 1000
byte buffer[BUFFER_SIZE];
void setup()
{
Serial.begin(9600);
Serial.println("MASTER READER");
Serial.println("*************");
Wire.begin(); // Activate I2C link
}
void loop()
{
for (int slaveAddress = FIRST_SLAVE_ADDRESS;
slaveAddress <= MAX_NUMBER_OF_SLAVES;
slaveAddress++)
{
Wire.requestFrom(slaveAddress, BUFFER_SIZE); // request data from the slave
if(Wire.available() == BUFFER_SIZE)
{ // if the available data size is same as I'm expecting
// Reads the buffer the slave sent
for (int i = 0; i < BUFFER_SIZE; i++)
{
buffer[i] = Wire.read(); // gets the data
}
// Parse the buffer
// In order to convert the incoming bytes info short, I use union
union short_tag {
byte b[2];
short val;
} short_cast;
// Parse the temperature
short_cast.b[0] = buffer[0];
short_cast.b[1] = buffer[1];
float temperature = ((float)(short_cast.val)) / 10;
// Parse the moisture
short_cast.b[0] = buffer[2];
short_cast.b[1] = buffer[3];
short moisture = short_cast.val;
// Prints the income data
Serial.print("Slave address ");
Serial.print(slaveAddress);
Serial.print(": Temprature = ");
Serial.print(temprature);
Serial.print("; Moisture = ");
Serial.println(moisture);
}
}
Serial.println("*************************");
delay(READ_CYCLE_DELAY);
}
}
And now the slave code:
#include <Wire.h>
#include <OneWire.h>
#include <DallasTemperature.h>
//=====================
// This is the hard-coded address. Change it from one device to another
#define SLAVE_ADDRESS 1
//=====================
// I2C Variables
#define BUFFER_SIZE 2
#define READ_CYCLE_DELAY 1000
short data[BUFFER_SIZE];
// Temprature Variables
OneWire oneWire(8);
DallasTemperature temperatureSensors(&oneWire);
float m_temperature;
// Moisture Variables
short m_moisture;
// General Variables
int m_timestamp;
void setup()
{
Serial.begin(9600);
Serial.println("SLAVE SENDER");
Serial.print("Node address: ");
Serial.println(SLAVE_ADDRESS);
Serial.print("Buffer size: ");
Serial.println(BUFFER_SIZE * sizeof(short));
Serial.println("***********************");
m_timestamp = millis();
Wire.begin(NODE_ADDRESS); // Activate I2C network
Wire.onRequest(requestEvent); // Set the request event handler
temperatureSensors.begin();
}
void loop()
{
if(millis() - m_timestamp < READ_CYCLE_DELAY) return;
// Reads the temperature
temperatureSensors.requestTemperatures();
m_temperature = temperatureSensors.getTempCByIndex(0);
// Reads the moisture
m_moisture = analogRead(A0);
}
void requestEvent()
{
data[0] = m_temperature * 10; // In order to use short, I multiple by 10
data[1] = m_moisture;
Wire.write((byte*)data, BUFFER_SIZE * sizeof(short));
}