# algorithm Knuth Morris Pratt (KMP) Algorithm KMP-Example

## Example

Algorithm

This algorithm is a two step process.First we create a auxiliary array lps[] and then use this array for searching the pattern.

Preprocessing :

1. We pre-process the pattern and create an auxiliary array lps[] which is used to skip characters while matching.
2. Here lps[] indicates longest proper prefix which is also suffix.A proper prefix is prefix in which whole string is not included.For example, prefixes of string ABC are “ ”, “A”, “AB” and “ABC”. Proper prefixes are “ ”, “A” and “AB”. Suffixes of the string are “ ”, “C”, “BC” and “ABC”.

Searching

1. We keep matching characters txt[i] and pat[j] and keep incrementing i and j while pat[j] and txt[i] keep matching.

2. When we see a mismatch,we know that characters pat[0..j-1] match with txt[i-j+1…i-1].We also know that lps[j-1] is count of characters of pat[0…j-1] that are both proper prefix and suffix.From this we can conclude that we do not need to match these lps[j-1] characters with txt[i-j…i-1] because we know that these characters will match anyway.

Implementaion in Java

``````public class KMP {

public static void main(String[] args) {
// TODO Auto-generated method stub
String str = "abcabdabc";
String pattern = "abc";
KMP obj = new KMP();
System.out.println(obj.patternExistKMP(str.toCharArray(), pattern.toCharArray()));
}

public int[] computeLPS(char[] str){
int lps[] = new int[str.length];

lps = 0;
int j = 0;
for(int i =1;i<str.length;i++){
if(str[j] == str[i]){
lps[i] = j+1;
j++;
i++;
}else{
if(j!=0){
j = lps[j-1];
}else{
lps[i] = j+1;
i++;
}
}

}

return lps;
}

public boolean patternExistKMP(char[] text,char[] pat){
int[] lps = computeLPS(pat);
int i=0,j=0;
while(i<text.length && j<pat.length){
if(text[i] == pat[j]){
i++;
j++;
}else{
if(j!=0){
j = lps[j-1];
}else{
i++;
}
}
}

if(j==pat.length)
return true;
return false;
}

}
`````` PDF - Download algorithm for free