Download this eBook for free

Chapters

Chapters

- Chapter 1: Getting started with R Language
- Chapter 2: *apply family of functions (functionals)
- Chapter 3: .Rprofile
- Chapter 4: Aggregating data frames
- Chapter 5: Analyze tweets with R
- Chapter 6: ANOVA
- Chapter 7: Arima Models
- Chapter 8: Arithmetic Operators
- Chapter 9: Bar Chart
- Chapter 10: Base Plotting
- Chapter 11: Bibliography in RMD
- Chapter 12: boxplot
- Chapter 13: caret
- Chapter 14: Classes
- Chapter 15: Cleaning data
- Chapter 16: Code profiling
- Chapter 17: Coercion
- Chapter 18: Color schemes for graphics
- Chapter 19: Column wise operation
- Chapter 20: Combinatorics
- Chapter 21: Control flow structures
- Chapter 22: Creating packages with devtools
- Chapter 23: Creating reports with RMarkdown
- Chapter 24: Creating vectors
- Chapter 25: Data acquisition
- Chapter 26: Data frames
- Chapter 27: data.table
- Chapter 28: Date and Time
- Chapter 29: Date-time classes (POSIXct and POSIXlt)
- Chapter 30: Debugging
- Chapter 31: Distribution Functions
- Chapter 32: dplyr
- Chapter 33: Expression: parse + eval
- Chapter 34: Extracting and Listing Files in Compressed Archives
- Chapter 35: Factors
- Chapter 36: Fault-tolerant/resilient code
- Chapter 37: Feature Selection in R -- Removing Extraneous Features
- Chapter 38: Formula
- Chapter 39: Fourier Series and Transformations
- Chapter 40: Functional programming
- Chapter 41: Generalized linear models
- Chapter 42: Get user input
- Chapter 43: ggplot2
- Chapter 44: GPU-accelerated computing
- Chapter 45: Hashmaps
- Chapter 46: heatmap and heatmap.2
- Chapter 47: Hierarchical clustering with hclust
- Chapter 48: Hierarchical Linear Modeling
- Chapter 49: I/O for database tables
- Chapter 50: I/O for foreign tables (Excel, SAS, SPSS, Stata)
- Chapter 51: I/O for geographic data (shapefiles, etc.)
- Chapter 52: I/O for raster images
- Chapter 53: I/O for R's binary format
- Chapter 54: Implement State Machine Pattern using S4 Class
- Chapter 55: Input and output
- Chapter 56: Inspecting packages
- Chapter 57: Installing packages
- Chapter 58: Introduction to Geographical Maps
- Chapter 59: Introspection
- Chapter 60: JSON
- Chapter 61: Linear Models (Regression)
- Chapter 62: Lists
- Chapter 63: lubridate
- Chapter 64: Machine learning
- Chapter 65: Matrices
- Chapter 66: Meta: Documentation Guidelines
- Chapter 67: Missing values
- Chapter 68: Modifying strings by substitution
- Chapter 69: Natural language processing
- Chapter 70: Network analysis with the igraph package
- Chapter 71: Non-standard evaluation and standard evaluation
- Chapter 72: Numeric classes and storage modes
- Chapter 73: Object-Oriented Programming in R
- Chapter 74: Parallel processing
- Chapter 75: Pattern Matching and Replacement
- Chapter 76: Performing a Permutation Test
- Chapter 77: Pipe operators (%>% and others)
- Chapter 78: Pivot and unpivot with data.table
- Chapter 79: Probability Distributions with R
- Chapter 80: Publishing
- Chapter 81: R code vectorization best practices
- Chapter 82: R in LaTeX with knitr
- Chapter 83: R Markdown Notebooks (from RStudio)
- Chapter 84: R memento by examples
- Chapter 85: Random Forest Algorithm
- Chapter 86: Random Numbers Generator
- Chapter 87: Randomization
- Chapter 88: Raster and Image Analysis
- Chapter 89: Rcpp
- Chapter 90: Reading and writing strings
- Chapter 91: Reading and writing tabular data in plain-text files (CSV, TSV, etc.)
- Chapter 92: Recycling
- Chapter 93: Regular Expression Syntax in R
- Chapter 94: Regular Expressions (regex)
- Chapter 95: Reproducible R
- Chapter 96: Reshape using tidyr
- Chapter 97: Reshaping data between long and wide forms
- Chapter 98: RESTful R Services
- Chapter 99: RMarkdown and knitr presentation
- Chapter 100: RODBC
- Chapter 101: roxygen2
- Chapter 102: Run-length encoding
- Chapter 103: Scope of variables
- Chapter 104: Set operations
- Chapter 105: Shiny
- Chapter 106: Solving ODEs in R
- Chapter 107: Spark API (SparkR)
- Chapter 108: spatial analysis
- Chapter 109: Speeding up tough-to-vectorize code
- Chapter 110: Split function
- Chapter 111: sqldf
- Chapter 112: Standardize analyses by writing standalone R scripts
- Chapter 113: String manipulation with stringi package
- Chapter 114: strsplit function
- Chapter 115: Subsetting
- Chapter 116: Survival analysis
- Chapter 117: Text mining
- Chapter 118: The character class
- Chapter 119: The Date class
- Chapter 120: The logical class
- Chapter 121: tidyverse
- Chapter 122: Time Series and Forecasting
- Chapter 123: Updating R and the package library
- Chapter 124: Updating R version
- Chapter 125: Using pipe assignment in your own package %<>%: How to ?
- Chapter 126: Using texreg to export models in a paper-ready way
- Chapter 127: Variables
- Chapter 128: Web Crawling in R
- Chapter 129: Web scraping and parsing
- Chapter 130: Writing functions in R
- Chapter 131: xgboost

Download this eBook for free