It is often useful to build matrices out of smaller matrices.
Matrices (and vectors, which are treated as column vectors) can be horizontally concatenated using the hcat
function.
julia> hcat([1 2; 3 4], [5 6 7; 8 9 10], [11, 12])
2×6 Array{Int64,2}:
1 2 5 6 7 11
3 4 8 9 10 12
There is convenience syntax available, using square bracket notation and spaces:
julia> [[1 2; 3 4] [5 6 7; 8 9 10] [11, 12]]
2×6 Array{Int64,2}:
1 2 5 6 7 11
3 4 8 9 10 12
This notation can closely match the notation for block matrices used in linear algebra:
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> B = [5 6; 7 8]
2×2 Array{Int64,2}:
5 6
7 8
julia> [A B]
2×4 Array{Int64,2}:
1 2 5 6
3 4 7 8
Note that you cannot horizontally concatenate a single matrix using the []
syntax, as that would instead create a one-element vector of matrices:
julia> [A]
1-element Array{Array{Int64,2},1}:
[1 2; 3 4]
Vertical concatenation is like horizontal concatenation, but in the vertical direction. The function for vertical concatenation is vcat
.
julia> vcat([1 2; 3 4], [5 6; 7 8; 9 10], [11 12])
6×2 Array{Int64,2}:
1 2
3 4
5 6
7 8
9 10
11 12
Alternatively, square bracket notation can be used with semicolons ;
as the delimiter:
julia> [[1 2; 3 4]; [5 6; 7 8; 9 10]; [11 12]]
6×2 Array{Int64,2}:
1 2
3 4
5 6
7 8
9 10
11 12
Vectors can be vertically concatenated too; the result is a vector:
julia> A = [1, 2, 3]
3-element Array{Int64,1}:
1
2
3
julia> B = [4, 5]
2-element Array{Int64,1}:
4
5
julia> [A; B]
5-element Array{Int64,1}:
1
2
3
4
5
Horizontal and vertical concatenation can be combined:
julia> A = [1 2
3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> B = [5 6 7]
1×3 Array{Int64,2}:
5 6 7
julia> C = [8, 9]
2-element Array{Int64,1}:
8
9
julia> [A C; B]
3×3 Array{Int64,2}:
1 2 8
3 4 9
5 6 7