1 dimensional
To integrate a one dimensional function
f = @(x) sin(x).^3 + 1;
within the range
xmin = 2;
xmax = 8;
one can call the function
q = integral(f,xmin,xmax);
it's also possible to set boundarys for relative and absolute errors
q = integral(f,xmin,xmax, 'RelTol',10e-6, 'AbsTol',10-4);
2 dimensional
If one wants to integrate a two dimensional function
f = @(x,y) sin(x).^y ;
within the range
xmin = 2;
xmax = 8;
ymin = 1;
ymax = 4;
one calls the function
q = integral2(f,xmin,xmax,ymin,ymax);
Like in the other case it's possible to limit the tolerances
q = integral2(f,xmin,xmax,ymin,ymax, 'RelTol',10e-6, 'AbsTol',10-4);
3 dimensional
Integrating a three dimensional function
f = @(x,y,z) sin(x).^y - cos(z) ;
within the range
xmin = 2;
xmax = 8;
ymin = 1;
ymax = 4;
zmin = 6;
zmax = 13;
is performed by calling
q = integral3(f,xmin,xmax,ymin,ymax, zmin, zmax);
Again it's possible to limit the tolerances
q = integral3(f,xmin,xmax,ymin,ymax, zmin, zmax, 'RelTol',10e-6, 'AbsTol',10-4);