Detailed instructions on getting pandas set up or installed can be found here in the official documentation.
Installing pandas with Anaconda
Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for inexperienced users.
The simplest way to install not only pandas, but Python and the most popular packages that make up the SciPy stack (IPython, NumPy, Matplotlib, ...) is with Anaconda, a cross-platform (Linux, Mac OS X, Windows) Python distribution for data analytics and scientific computing.
After running a simple installer, the user will have access to pandas and the rest of the SciPy stack without needing to install anything else, and without needing to wait for any software to be compiled.
Installation instructions for Anaconda can be found here.
A full list of the packages available as part of the Anaconda distribution can be found here.
An additional advantage of installing with Anaconda is that you don’t require admin rights to install it, it will install in the user’s home directory, and this also makes it trivial to delete Anaconda at a later date (just delete that folder).
Installing pandas with Miniconda
The previous section outlined how to get pandas installed as part of the Anaconda distribution. However this approach means you will install well over one hundred packages and involves downloading the installer which is a few hundred megabytes in size.
If you want to have more control on which packages, or have a limited internet bandwidth, then installing pandas with Miniconda may be a better solution.
Conda is the package manager that the Anaconda distribution is built upon. It is a package manager that is both cross-platform and language agnostic (it can play a similar role to a pip and virtualenv combination).
Miniconda allows you to create a minimal self contained Python installation, and then use the Conda command to install additional packages.
First you will need Conda to be installed and downloading and running the Miniconda will do this for you. The installer can be found here.
The next step is to create a new conda environment (these are analogous to a virtualenv but they also allow you to specify precisely which Python version to install also). Run the following commands from a terminal window:
conda create -n name_of_my_env python
This will create a minimal environment with only Python installed in it. To put your self inside this environment run:
source activate name_of_my_env
On Windows the command is:
activate name_of_my_env
The final step required is to install pandas. This can be done with the following command:
conda install pandas
To install a specific pandas version:
conda install pandas=0.13.1
To install other packages, IPython for example:
conda install ipython
To install the full Anaconda distribution:
conda install anaconda
If you require any packages that are available to pip but not conda, simply install pip, and use pip to install these packages:
conda install pip
pip install django
Usually, you would install pandas with one of packet managers.
pip example:
pip install pandas
This will likely require the installation of a number of dependencies, including NumPy, will require a compiler to compile required bits of code, and can take a few minutes to complete.