Rust Read-write locks


Example

RwLocks allow a single producer provide any number of readers with data while preventing readers from seeing invalid or inconsistent data.

The following example uses RwLock to show how a single producer thread can periodically increase a value while two consumers threads are reading the value.

use std::time::Duration;
use std::thread;
use std::thread::sleep;
use std::sync::{Arc, RwLock };

fn main() {
    // Create an u32 with an inital value of 0
    let initial_value = 0u32;

    // Move the initial value into the read-write lock which is wrapped into an atomic reference
    // counter in order to allow safe sharing.
    let rw_lock = Arc::new(RwLock::new(initial_value));

    // Create a clone for each thread
    let producer_lock = rw_lock.clone();
    let consumer_id_lock = rw_lock.clone();
    let consumer_square_lock = rw_lock.clone();

    let producer_thread = thread::spawn(move || {
        loop {
            // write() blocks this thread until write-exclusive access can be acquired and retuns an 
            // RAII guard upon completion
            if let Ok(mut write_guard) = producer_lock.write() {
                // the returned write_guard implements `Deref` giving us easy access to the target value
                *write_guard += 1;

                println!("Updated value: {}", *write_guard);
            }

            // ^
            // |   when the RAII guard goes out of the scope, write access will be dropped, allowing
            // +~  other threads access the lock

            sleep(Duration::from_millis(1000));
        }
    });

    // A reader thread that prints the current value to the screen
    let consumer_id_thread = thread::spawn(move || {
        loop {
            // read() will only block when `producer_thread` is holding a write lock
            if let Ok(read_guard) = consumer_id_lock.read() {
                // the returned read_guard also implements `Deref`
                println!("Read value: {}", *read_guard);
            }

            sleep(Duration::from_millis(500));
        }
    });

    // A second reader thread is printing the squared value to the screen. Note that readers don't
    // block each other so `consumer_square_thread` can run simultaneously with `consumer_id_lock`.
    let consumer_square_thread = thread::spawn(move || {
        loop {
            if let Ok(lock) = consumer_square_lock.read() {
                let value = *lock;
                println!("Read value squared: {}", value * value);
            }

            sleep(Duration::from_millis(750));
        }
    });

    let _ = producer_thread.join();
    let _ = consumer_id_thread.join();
    let _ = consumer_square_thread.join();
}

Example output:

Updated value: 1
Read value: 1
Read value squared: 1
Read value: 1
Read value squared: 1
Updated value: 2
Read value: 2
Read value: 2
Read value squared: 4
Updated value: 3
Read value: 3
Read value squared: 9
Read value: 3
Updated value: 4
Read value: 4
Read value squared: 16
Read value: 4
Read value squared: 16
Updated value: 5
Read value: 5
Read value: 5
Read value squared: 25
...(Interrupted)...