Haskell Language Getting started with Haskell Language Fibonacci, Using Lazy Evaluation


Example

Lazy evaluation means Haskell will evaluate only list items whose values are needed.

The basic recursive definition is:

f (0)  <-  0
f (1)  <-  1
f (n)  <-  f (n-1) + f (n-2)

If evaluated directly, it will be very slow. But, imagine we have a list that records all the results,

fibs !! n  <-  f (n) 

Then

                  ┌──────┐   ┌──────┐   ┌──────┐
                  │ f(0) │   │ f(1) │   │ f(2) │
fibs  ->  0 : 1 : │  +   │ : │  +   │ : │  +   │ :  .....
                  │ f(1) │   │ f(2) │   │ f(3) │
                  └──────┘   └──────┘   └──────┘

                  ┌────────────────────────────────────────┐
                  │ f(0)   :   f(1)   :   f(2)   :  .....  │ 
                  └────────────────────────────────────────┘
      ->  0 : 1 :               +
                  ┌────────────────────────────────────────┐
                  │ f(1)   :   f(2)   :   f(3)   :  .....  │
                  └────────────────────────────────────────┘

This is coded as:

fibn n = fibs !! n
    where
    fibs = 0 : 1 : map f [2..]
    f n = fibs !! (n-1) + fibs !! (n-2)

Or even as

GHCi> let fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
GHCi> take 10 fibs
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

zipWith makes a list by applying a given binary function to corresponding elements of the two lists given to it, so zipWith (+) [x1, x2, ...] [y1, y2, ...] is equal to [x1 + y1, x2 + y2, ...].

Another way of writing fibs is with the scanl function:

GHCi> let fibs = 0 : scanl (+) 1 fibs
GHCi> take 10 fibs
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

scanl builds the list of partial results that foldl would produce, working from left to right along the input list. That is, scanl f z0 [x1, x2, ...] is equal to [z0, z1, z2, ...] where z1 = f z0 x1; z2 = f z1 x2; ....

Thanks to lazy evaluation, both functions define infinite lists without computing them out entirely. That is, we can write a fib function, retrieving the nth element of the unbounded Fibonacci sequence:

GHCi> let fib n = fibs !! n  -- (!!) being the list subscript operator
-- or in point-free style:
GHCi> let fib = (fibs !!)
GHCi> fib 9
34