In Haskell, all expressions (which includes numerical constants and functions operating on those) have a decidable type. At compile time, the type-checker infers the type of an expression from the types of the elementary functions that compose it. Since data is immutable by default, there are no "type casting" operations, but there are functions that copy data and generalize or specialize the types within reason.

`Num`

sits at the root of the numeric typeclass hierarchy. Its characteristic operations and some common instances are shown below (the ones loaded by default with Prelude plus those of `Data.Complex`

):

```
λ> :i Num
class Num a where
(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
abs :: a -> a
signum :: a -> a
fromInteger :: Integer -> a
{-# MINIMAL (+), (*), abs, signum, fromInteger, (negate | (-)) #-}
-- Defined in ‘GHC.Num’
instance RealFloat a => Num (Complex a) -- Defined in ‘Data.Complex’
instance Num Word -- Defined in ‘GHC.Num’
instance Num Integer -- Defined in ‘GHC.Num’
instance Num Int -- Defined in ‘GHC.Num’
instance Num Float -- Defined in ‘GHC.Float’
instance Num Double -- Defined in ‘GHC.Float’
```

We have already seen the `Fractional`

class, which requires `Num`

and introduces the notions of "division" `(/)`

and reciprocal of a number:

```
λ> :i Fractional
class Num a => Fractional a where
(/) :: a -> a -> a
recip :: a -> a
fromRational :: Rational -> a
{-# MINIMAL fromRational, (recip | (/)) #-}
-- Defined in ‘GHC.Real’
instance RealFloat a => Fractional (Complex a) -- Defined in ‘Data.Complex’
instance Fractional Float -- Defined in ‘GHC.Float’
instance Fractional Double -- Defined in ‘GHC.Float’
```

The `Real`

class models .. the real numbers. It requires `Num`

and `Ord`

, therefore it models an ordered numerical field. As a counterexample, Complex numbers are *not* an ordered field (i.e. they do not possess a natural ordering relationship):

```
λ> :i Real
class (Num a, Ord a) => Real a where
toRational :: a -> Rational
{-# MINIMAL toRational #-}
-- Defined in ‘GHC.Real’
instance Real Word -- Defined in ‘GHC.Real’
instance Real Integer -- Defined in ‘GHC.Real’
instance Real Int -- Defined in ‘GHC.Real’
instance Real Float -- Defined in ‘GHC.Float’
instance Real Double -- Defined in ‘GHC.Float’
```

`RealFrac`

represents numbers that may be rounded

```
λ> :i RealFrac
class (Real a, Fractional a) => RealFrac a where
properFraction :: Integral b => a -> (b, a)
truncate :: Integral b => a -> b
round :: Integral b => a -> b
ceiling :: Integral b => a -> b
floor :: Integral b => a -> b
{-# MINIMAL properFraction #-}
-- Defined in ‘GHC.Real’
instance RealFrac Float -- Defined in ‘GHC.Float’
instance RealFrac Double -- Defined in ‘GHC.Float’
```

`Floating`

(which implies `Fractional`

) represents constants and operations that may not have a finite decimal expansion.

```
λ> :i Floating
class Fractional a => Floating a where
pi :: a
exp :: a -> a
log :: a -> a
sqrt :: a -> a
(**) :: a -> a -> a
logBase :: a -> a -> a
sin :: a -> a
cos :: a -> a
tan :: a -> a
asin :: a -> a
acos :: a -> a
atan :: a -> a
sinh :: a -> a
cosh :: a -> a
tanh :: a -> a
asinh :: a -> a
acosh :: a -> a
atanh :: a -> a
GHC.Float.log1p :: a -> a
GHC.Float.expm1 :: a -> a
GHC.Float.log1pexp :: a -> a
GHC.Float.log1mexp :: a -> a
{-# MINIMAL pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh,
asinh, acosh, atanh #-}
-- Defined in ‘GHC.Float’
instance RealFloat a => Floating (Complex a) -- Defined in ‘Data.Complex’
instance Floating Float -- Defined in ‘GHC.Float’
instance Floating Double -- Defined in ‘GHC.Float’
```

Caution: while expressions such as `sqrt . negate :: Floating a => a -> a`

are perfectly valid, they might return `NaN`

("not-a-number"), which may not be an intended behaviour. In such cases, we might want to work over the Complex field (shown later).

This modified text is an extract of the original Stack Overflow Documentation created by following contributors and released under CC BY-SA 3.0

This website is not affiliated with Stack Overflow