In some cases we need to apply functions to a set of ND-arrays. Let's look at this simple example.

```
A(:,:,1) = [1 2; 4 5];
A(:,:,2) = [11 22; 44 55];
B(:,:,1) = [7 8; 1 2];
B(:,:,2) = [77 88; 11 22];
A =
ans(:,:,1) =
1 2
4 5
ans(:,:,2) =
11 22
44 55
>> B
B =
ans(:,:,1) =
7 8
1 2
ans(:,:,2) =
77 88
11 22
```

Both matrices are 3D, let's say we have to calculate the following:

```
result= zeros(2,2);
...
for k = 1:2
result(i,j) = result(i,j) + abs( A(i,j,k) - B(i,j,k) );
...
if k is very large, this for-loop can be a bottleneck since MATLAB order the data in a column major fashion. So a better way to compute "result" could be:
% trying to exploit the column major ordering
Aprime = reshape(permute(A,[3,1,2]), [2,4]);
Bprime = reshape(permute(B,[3,1,2]), [2,4]);
>> Aprime
Aprime =
1 4 2 5
11 44 22 55
>> Bprime
Bprime =
7 1 8 2
77 11 88 22
```

Now we replace the above loop for as following:

```
result= zeros(2,2);
....
temp = abs(Aprime - Bprime);
for k = 1:2
result(i,j) = result(i,j) + temp(k, i+2*(j-1));
...
```

We rearranged the data so we can exploit the cache memory. Permutation and reshape can be costly but when working with big ND-arrays the computational cost related to these operations is much lower than working with not arranged arrays.

This modified text is an extract of the original Stack Overflow Documentation created by following contributors and released under CC BY-SA 3.0

This website is not affiliated with Stack Overflow