One can select rows and columns of a dataframe using boolean arrays.
import pandas as pd
import numpy as np
np.random.seed(5)
df = pd.DataFrame(np.random.randint(100, size=(5, 5)), columns = list("ABCDE"),
index = ["R" + str(i) for i in range(5)])
print (df)
# A B C D E
# R0 99 78 61 16 73
# R1 8 62 27 30 80
# R2 7 76 15 53 80
# R3 27 44 77 75 65
# R4 47 30 84 86 18
mask = df['A'] > 10
print (mask)
# R0 True
# R1 False
# R2 False
# R3 True
# R4 True
# Name: A, dtype: bool
print (df[mask])
# A B C D E
# R0 99 78 61 16 73
# R3 27 44 77 75 65
# R4 47 30 84 86 18
print (df.ix[mask, 'C'])
# R0 61
# R3 77
# R4 84
# Name: C, dtype: int32
print(df.ix[mask, ['C', 'D']])
# C D
# R0 61 16
# R3 77 75
# R4 84 86
More in pandas documentation.