Peudo-random generators are frequently useful when designing simulation environments. The following VHDL package shows how to use protected types to design a pseudo-random generator of boolean
, bit
and bit_vector
. It can easily be extended to also generate random std_ulogic_vector
, signed
, unsigned
. Extending it to generate random integers with arbitrary bounds and a uniform distribution is a bit more tricky but doable.
A protected type has a declaration where all public subprogram accessors are declared. For our random generator we will make public one seed initialization procedure and three impure functions returning a random boolean
, bit
or bit_vector
. Note that the functions cannot be pure as different calls of any of them, with the same parameters, can return different values.
-- file rnd_pkg.vhd
package rnd_pkg is
type rnd_generator is protected
procedure init(seed: bit_vector);
impure function get_boolean return boolean;
impure function get_bit return bit;
impure function get_bit_vector(size: positive) return bit_vector;
end protected rnd_generator;
end package rnd_pkg;
The protected type body defines the inner data structures (members) and the subprogram bodies. Our random generator is based on a 128-bits Linear Feedback Shift Register (LFSR) with four taps. The state
variable stores the current state of the LFSR. A private throw
procedure shifts the LFSR every time the generator is used.
-- file rnd_pkg.vhd
package body rnd_pkg is
type rnd_generator is protected body
constant len: positive := 128;
constant default_seed: bit_vector(1 to len) := X"8bf052e898d987c7c31fc71c1fc063bc";
type tap_array is array(natural range <>) of positive range 1 to len;
constant taps: tap_array(0 to 3) := (128, 126, 101, 99);
variable state: bit_vector(1 to len) := default_seed;
procedure throw(n: positive := 1) is
variable tmp: bit;
begin
for i in 1 to n loop
tmp := '1';
for j in taps'range loop
tmp := tmp xnor state(taps(j));
end loop;
state := tmp & state(1 to len - 1);
end loop;
end procedure throw;
procedure init(seed: bit_vector) is
constant n: natural := seed'length;
constant tmp: bit_vector(1 to n) := seed;
constant m: natural := minimum(n, len);
begin
state := (others => '0');
state(1 to m) := tmp(1 to m);
end procedure init;
impure function get_boolean return boolean is
constant res: boolean := state(len) = '1';
begin
throw;
return res;
end function get_boolean;
impure function get_bit return bit is
constant res: bit := state(len);
begin
throw;
return res;
end function get_bit;
impure function get_bit_vector(size: positive) return bit_vector is
variable res: bit_vector(1 to size);
begin
if size <= len then
res := state(len + 1 - size to len);
throw(size);
else
res(1 to len) := state;
throw(len);
res(len + 1 to size) := get_bit_vector(size - len);
end if;
return res;
end function get_bit_vector;
end protected body rnd_generator;
end package body rnd_pkg;
The random generator can then be used in a OO style as in:
-- file rnd_sim.vhd
use std.env.all;
use std.textio.all;
use work.rnd_pkg.all;
entity rnd_sim is
end entity rnd_sim;
architecture sim of rnd_sim is
shared variable rnd: rnd_generator;
begin
process
variable l: line;
begin
rnd.init(X"fe39_3d9f_24bb_5bdc_a7d0_2572_cbff_0117");
for i in 1 to 10 loop
write(l, rnd.get_boolean);
write(l, HT);
write(l, rnd.get_bit);
write(l, HT);
write(l, rnd.get_bit_vector(10));
writeline(output, l);
end loop;
finish;
end process;
end architecture sim;
$ mkdir gh_work
$ ghdl -a --std=08 --workdir=gh_work rnd_pkg.vhd rnd_sim.vhd
$ ghdl -r --std=08 --workdir=gh_work rnd_sim
TRUE 1 0001000101
FALSE 0 1111111100
TRUE 1 0010110010
TRUE 1 0010010101
FALSE 0 0111110100
FALSE 1 1101110010
TRUE 1 1011010110
TRUE 1 0010010010
TRUE 1 1101100111
TRUE 1 0011100100
simulation finished @0ms