There exist cases in which it is necessary to put data of different types together. In Azure ML for example, it is necessary to pass informations from a R script module to another one exclusively throught dataframes. Suppose we have a dataframe and a number:
> df
name height team fun_index title age desc Y
1 Andrea 195 Lazio 97 6 33 eccellente 1
2 Paja 165 Fiorentina 87 6 31 deciso 1
3 Roro 190 Lazio 65 6 28 strano 0
4 Gioele 70 Lazio 100 0 2 simpatico 1
5 Cacio 170 Juventus 81 3 33 duro 0
6 Edola 171 Lazio 72 5 32 svampito 1
7 Salami 175 Inter 75 3 30 doppiopasso 1
8 Braugo 180 Inter 79 5 32 gjn 0
9 Benna 158 Juventus 80 6 28 esaurito 0
10 Riggio 182 Lazio 92 5 31 certezza 1
11 Giordano 185 Roma 79 5 29 buono 1
> number <- "42"
We can access to this information:
> paste(df$name[4],"is a",df3$team[4], "supporter." )
[1] "Gioele is a Lazio supporter."
> paste("The answer to THE question is", number )
[1] "The answer to THE question is 42"
In order to put different types of data in a dataframe we have to use the list object and the serialization. In particular we have to put the data in a generic list and then put the list in a particular dataframe:
l <- list(df,number)
dataframe_container <- data.frame(out2 = as.integer(serialize(l, connection=NULL)))
Once we have stored the information in the dataframe, we need to deserialize it in order to use it:
#----- unserialize ----------------------------------------+
unser_obj <- unserialize(as.raw(dataframe_container$out2))
#----- taking back the elements----------------------------+
df_mod <- unser_obj[1][[1]]
number_mod <- unser_obj[2][[1]]
Then, we can verify that the data are transfered correctly:
> paste(df_mod$name[4],"is a",df_mod$team[4], "supporter." )
[1] "Gioele is a Lazio supporter."
> paste("The answer to THE question is", number_mod )
[1] "The answer to THE question is 42"