with other sets
# Intersection    
{1, 2, 3, 4, 5}.intersection({3, 4, 5, 6})  # {3, 4, 5}
{1, 2, 3, 4, 5} & {3, 4, 5, 6}              # {3, 4, 5}
# Union
{1, 2, 3, 4, 5}.union({3, 4, 5, 6})  # {1, 2, 3, 4, 5, 6}
{1, 2, 3, 4, 5} | {3, 4, 5, 6}       # {1, 2, 3, 4, 5, 6}
# Difference
{1, 2, 3, 4}.difference({2, 3, 5})  # {1, 4}
{1, 2, 3, 4} - {2, 3, 5}            # {1, 4}
# Symmetric difference with
{1, 2, 3, 4}.symmetric_difference({2, 3, 5})  # {1, 4, 5}
{1, 2, 3, 4} ^ {2, 3, 5}                      # {1, 4, 5}
# Superset check
{1, 2}.issuperset({1, 2, 3})  # False
{1, 2} >= {1, 2, 3}           # False
# Subset check
{1, 2}.issubset({1, 2, 3})  # True
{1, 2} <= {1, 2, 3}         # True
# Disjoint check
{1, 2}.isdisjoint({3, 4})  # True
{1, 2}.isdisjoint({1, 4})  # False
with single elements
# Existence check
2 in {1,2,3}      # True
4 in {1,2,3}      # False
4 not in {1,2,3}  # True
# Add and Remove
s = {1,2,3}
s.add(4)        # s == {1,2,3,4}
s.discard(3)    # s == {1,2,4}
s.discard(5)    # s == {1,2,4}
s.remove(2)     # s == {1,4}
s.remove(2)     # KeyError!
Set operations return new sets, but have the corresponding in-place versions:
| method | in-place operation | in-place method | 
|---|---|---|
| union | s |= t | update | 
| intersection | s &= t | intersection_update | 
| difference | s -= t | difference_update | 
| symmetric_difference | s ^= t | symmetric_difference_update | 
For example:
s = {1, 2}
s.update({3, 4})   # s == {1, 2, 3, 4}
 
                