Magic (also called dunder as an abbreviation for double-underscore) methods in Python serve a similar purpose to operator overloading in other languages. They allow a class to define its behavior when it is used as an operand in unary or binary operator expressions. They also serve as implementations called by some built-in functions.
Consider this implementation of two-dimensional vectors.
import math
class Vector(object):
# instantiation
def __init__(self, x, y):
self.x = x
self.y = y
# unary negation (-v)
def __neg__(self):
return Vector(-self.x, -self.y)
# addition (v + u)
def __add__(self, other):
return Vector(self.x + other.x, self.y + other.y)
# subtraction (v - u)
def __sub__(self, other):
return self + (-other)
# equality (v == u)
def __eq__(self, other):
return self.x == other.x and self.y == other.y
# abs(v)
def __abs__(self):
return math.hypot(self.x, self.y)
# str(v)
def __str__(self):
return '<{0.x}, {0.y}>'.format(self)
# repr(v)
def __repr__(self):
return 'Vector({0.x}, {0.y})'.format(self)
Now it is possible to naturally use instances of the Vector
class in various expressions.
v = Vector(1, 4)
u = Vector(2, 0)
u + v # Vector(3, 4)
print(u + v) # "<3, 4>" (implicit string conversion)
u - v # Vector(1, -4)
u == v # False
u + v == v + u # True
abs(u + v) # 5.0