Looking for python Answers? Try Ask4KnowledgeBase
Looking for python Keywords? Try Ask4Keywords

Python Language Advanced complex arithmetic


Example

The module cmath includes additional functions to use complex numbers.

import cmath

This module can calculate the phase of a complex number, in radians:

z = 2+3j # A complex number
cmath.phase(z) # 0.982793723247329

It allows the conversion between the cartesian (rectangular) and polar representations of complex numbers:

cmath.polar(z) # (3.605551275463989, 0.982793723247329)
cmath.rect(2, cmath.pi/2) # (0+2j)

The module contains the complex version of

  • Exponential and logarithmic functions (as usual, log is the natural logarithm and log10 the decimal logarithm):

      cmath.exp(z) # (-7.315110094901103+1.0427436562359045j)
      cmath.log(z) # (1.2824746787307684+0.982793723247329j)
      cmath.log10(-100) # (2+1.3643763538418412j)
    
  • Square roots:

      cmath.sqrt(z) # (1.6741492280355401+0.8959774761298381j)
    
  • Trigonometric functions and their inverses:

      cmath.sin(z)  # (9.15449914691143-4.168906959966565j)
      cmath.cos(z)  # (-4.189625690968807-9.109227893755337j)
      cmath.tan(z)  # (-0.003764025641504249+1.00323862735361j)
      cmath.asin(z) # (0.5706527843210994+1.9833870299165355j)
      cmath.acos(z) # (1.0001435424737972-1.9833870299165355j)
      cmath.atan(z) # (1.4099210495965755+0.22907268296853878j)
      cmath.sin(z)**2 + cmath.cos(z)**2 # (1+0j)
    
  • Hyperbolic functions and their inverses:

      cmath.sinh(z)  # (-3.59056458998578+0.5309210862485197j)
      cmath.cosh(z)  # (-3.7245455049153224+0.5118225699873846j)
      cmath.tanh(z)  # (0.965385879022133-0.009884375038322495j)
      cmath.asinh(z) # (0.5706527843210994+1.9833870299165355j)
      cmath.acosh(z) # (1.9833870299165355+1.0001435424737972j)
      cmath.atanh(z) # (0.14694666622552977+1.3389725222944935j)
      cmath.cosh(z)**2 - cmath.sin(z)**2  # (1+0j)
      cmath.cosh((0+1j)*z) - cmath.cos(z) # 0j