Let's demonstrate the power of PLY with a simple example: this program will take an arithmetic expression as a string input, and attempt to solve it.
Open up your favourite editor and copy the following code:
from ply import lex
import ply.yacc as yacc
tokens = (
'PLUS',
'MINUS',
'TIMES',
'DIV',
'LPAREN',
'RPAREN',
'NUMBER',
)
t_ignore = ' \t'
t_PLUS = r'\+'
t_MINUS = r'-'
t_TIMES = r'\*'
t_DIV = r'/'
t_LPAREN = r'\('
t_RPAREN = r'\)'
def t_NUMBER( t ) :
r'[0-9]+'
t.value = int( t.value )
return t
def t_newline( t ):
r'\n+'
t.lexer.lineno += len( t.value )
def t_error( t ):
print("Invalid Token:",t.value[0])
t.lexer.skip( 1 )
lexer = lex.lex()
precedence = (
( 'left', 'PLUS', 'MINUS' ),
( 'left', 'TIMES', 'DIV' ),
( 'nonassoc', 'UMINUS' )
)
def p_add( p ) :
'expr : expr PLUS expr'
p[0] = p[1] + p[3]
def p_sub( p ) :
'expr : expr MINUS expr'
p[0] = p[1] - p[3]
def p_expr2uminus( p ) :
'expr : MINUS expr %prec UMINUS'
p[0] = - p[2]
def p_mult_div( p ) :
'''expr : expr TIMES expr
| expr DIV expr'''
if p[2] == '*' :
p[0] = p[1] * p[3]
else :
if p[3] == 0 :
print("Can't divide by 0")
raise ZeroDivisionError('integer division by 0')
p[0] = p[1] / p[3]
def p_expr2NUM( p ) :
'expr : NUMBER'
p[0] = p[1]
def p_parens( p ) :
'expr : LPAREN expr RPAREN'
p[0] = p[2]
def p_error( p ):
print("Syntax error in input!")
parser = yacc.yacc()
res = parser.parse("-4*-(3-5)") # the input
print(res)
Save this file as calc.py
and run it.
Output:
-8
Which is the right answer for -4 * - (3 - 5)
.