Every class which overloads the operator()
can be used as a function object. These classes can be written by hand (often referred to as functors) or automatically generated by the compiler by writing Lambdas from C++11 on.
struct Person {
std::string name;
unsigned int age;
};
// Functor which find a person by name
struct FindPersonByName {
FindPersonByName(const std::string &name) : _name(name) {}
// Overloaded method which will get called
bool operator()(const Person &person) const {
return person.name == _name;
}
private:
std::string _name;
};
std::vector<Person> v; // Assume this contains data
std::vector<Person>::iterator iFind =
std::find_if(v.begin(), v.end(), FindPersonByName("Foobar"));
// ...
As functors have their own identity, they cannot be put in a typedef and these have to be accepted via template argument. The definition of std::find_if
can look like:
template<typename Iterator, typename Predicate>
Iterator find_if(Iterator begin, Iterator end, Predicate &predicate) {
for (Iterator i = begin, i != end, ++i)
if (predicate(*i))
return i;
return end;
}
From C++17 on, the calling of the predicate can be done with invoke: std::invoke(predicate, *i)
.