Aggregate
Applies an accumulator function over a sequence.
int[] intList = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = intList.Aggregate((prevSum, current) => prevSum + current);
// sum = 55
prevSum = 1
prevSum = prevSum(at the first step) + 2
prevSum = prevSum(at the (i-1) step) + i-th element of the array
string[] stringList = { "Hello", "World", "!" };
string joinedString = stringList.Aggregate((prev, current) => prev + " " + current);
// joinedString = "Hello World !"
A second overload of Aggregate
also receives an seed
parameter which is the initial accumulator value. This can be used to calculate multiple conditions on a collection without iterating it more than once.
List<int> items = new List<int> { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };
For the collection of items
we want to calculate
.Count
Using Aggregate
it can be done like this:
var result = items.Aggregate(new { Total = 0, Even = 0, FourthItems = new List<int>() },
(accumelative,item) =>
new {
Total = accumelative.Total + 1,
Even = accumelative.Even + (item % 2 == 0 ? 1 : 0),
FourthItems = (accumelative.Total + 1)%4 == 0 ?
new List<int>(accumelative.FourthItems) { item } :
accumelative.FourthItems
});
// Result:
// Total = 12
// Even = 6
// FourthItems = [4, 8, 12]
Note that using an anonymous type as the seed one has to instantiate a new object each item because the properties are read only. Using a custom class one can simply assign the information and no new
is needed (only when giving the initial seed
parameter