It is common for memory performance to compress multiple values into a single primitive value. This may be useful to pass various information into a single variable.
For example, one can pack 3 bytes - such as color code in RGB - into an single int.
Packing the values
// Raw bytes as input
byte[] b = {(byte)0x65, (byte)0xFF, (byte)0x31};
// Packed in big endian: x == 0x65FF31
int x = (b[0] & 0xFF) << 16 // Red
| (b[1] & 0xFF) << 8 // Green
| (b[2] & 0xFF) << 0; // Blue
// Packed in little endian: y == 0x31FF65
int y = (b[0] & 0xFF) << 0
| (b[1] & 0xFF) << 8
| (b[2] & 0xFF) << 16;
Unpacking the values
// Raw int32 as input
int x = 0x31FF65;
// Unpacked in big endian: {0x65, 0xFF, 0x31}
byte[] c = {
(byte)(x >> 16),
(byte)(x >> 8),
(byte)(x & 0xFF)
};
// Unpacked in little endian: {0x31, 0xFF, 0x65}
byte[] d = {
(byte)(x & 0xFF),
(byte)(x >> 8),
(byte)(x >> 16)
};